IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v107y2016i3d10.1007_s11192-016-1888-3.html
   My bibliography  Save this article

Technological distance measures: new perspectives on nearby and far away

Author

Listed:
  • H. Simon

    (University of Muenster)

  • N. Sick

    (Helmholtz-Institute Muenster)

Abstract

Understanding the competitive environment of one’s company is crucial for every manager. One tool to quantify the technological relationships between companies, evaluate industry landscapes and knowledge transfer potential in collaborations is the technological distance. There are different methods and many different factors that impact the results and thus the conclusions that are drawn from distance calculation. Therefore, the present study derives guidelines for calculating and evaluating technological distances for three common methods, i.e. the Euclidean distance, the cosine angle and the min-complement distance. For this purpose, we identify factors that influence the results of technological distance calculation using simulation. Subsequently, we analyze technological distances of cross-industry collaborations in the field of electric mobility. Our findings show that a high level of detail is necessary to achieve insightful results. If the topic in scope of the analysis does not represent the core business of the companies, we recommend filters to focus on the respective topic. Another key suggestion is to compare the calculated results to a peer group in order to evaluate if a distance can be evaluated as ‘near’ or ‘far’.

Suggested Citation

  • H. Simon & N. Sick, 2016. "Technological distance measures: new perspectives on nearby and far away," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(3), pages 1299-1320, June.
  • Handle: RePEc:spr:scient:v:107:y:2016:i:3:d:10.1007_s11192-016-1888-3
    DOI: 10.1007/s11192-016-1888-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-016-1888-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-016-1888-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Loet Leydesdorff & Duncan Kushnir & Ismael Rafols, 2014. "Interactive overlay maps for US patent (USPTO) data based on International Patent Classification (IPC)," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(3), pages 1583-1599, March.
    2. McNamee, Robert C., 2013. "Can’t see the forest for the leaves: Similarity and distance measures for hierarchical taxonomies with a patent classification example," Research Policy, Elsevier, vol. 42(4), pages 855-873.
    3. Wim Vanhaverbeke & Victor Gilsing & Bonnie Beerkens & Geert Duysters, 2009. "The Role of Alliance Network Redundancy in the Creation of Core and Non‐core Technologies," Journal of Management Studies, Wiley Blackwell, vol. 46(2), pages 215-244, March.
    4. Gauch, Stephan & Blind, Knut, 2015. "Technological convergence and the absorptive capacity of standardisation," Technological Forecasting and Social Change, Elsevier, vol. 91(C), pages 236-249.
    5. Si Hyung Joo & Yeonbae Kim, 2010. "Measuring relatedness between technological fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 83(2), pages 435-454, May.
    6. Corinne Autant‐Bernard & Pascal Billand & David Frachisse & Nadine Massard, 2007. "Social distance versus spatial distance in R&D cooperation: Empirical evidence from European collaboration choices in micro and nanotechnologies," Papers in Regional Science, Wiley Blackwell, vol. 86(3), pages 495-519, August.
    7. Gilsing, Victor & Nooteboom, Bart & Vanhaverbeke, Wim & Duysters, Geert & van den Oord, Ad, 2008. "Network embeddedness and the exploration of novel technologies: Technological distance, betweenness centrality and density," Research Policy, Elsevier, vol. 37(10), pages 1717-1731, December.
    8. Pao-Long Chang & Chao-Chan Wu & Hoang-Jyh Leu, 2010. "Using patent analyses to monitor the technological trends in an emerging field of technology: a case of carbon nanotube field emission display," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(1), pages 5-19, January.
    9. William P. Jones & George W. Furnas, 1987. "Pictures of relevance: A geometric analysis of similarity measures," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 38(6), pages 420-442, November.
    10. Jaffe, Adam B., 1989. "Characterizing the "technological position" of firms, with application to quantifying technological opportunity and research spillovers," Research Policy, Elsevier, vol. 18(2), pages 87-97, April.
    11. Gao, Lidan & Porter, Alan L. & Wang, Jing & Fang, Shu & Zhang, Xian & Ma, Tingting & Wang, Wenping & Huang, Lu, 2013. "Technology life cycle analysis method based on patent documents," Technological Forecasting and Social Change, Elsevier, vol. 80(3), pages 398-407.
    12. Pietro Peretto & Sjak Smulders, 2002. "Technological Distance, Growth And Scale Effects," Economic Journal, Royal Economic Society, vol. 112(481), pages 603-624, July.
    13. Gautam Ahuja & Riitta Katila, 2001. "Technological acquisitions and the innovation performance of acquiring firms: a longitudinal study," Strategic Management Journal, Wiley Blackwell, vol. 22(3), pages 197-220, March.
    14. Christian Sternitzke & Isumo Bergmann, 2009. "Similarity measures for document mapping: A comparative study on the level of an individual scientist," Scientometrics, Springer;Akadémiai Kiadó, vol. 78(1), pages 113-130, January.
    15. Nooteboom, Bart & Van Haverbeke, Wim & Duysters, Geert & Gilsing, Victor & van den Oord, Ad, 2007. "Optimal cognitive distance and absorptive capacity," Research Policy, Elsevier, vol. 36(7), pages 1016-1034, September.
    16. Cloodt, Myriam & Hagedoorn, John & Van Kranenburg, Hans, 2006. "Mergers and acquisitions: Their effect on the innovative performance of companies in high-tech industries," Research Policy, Elsevier, vol. 35(5), pages 642-654, June.
    17. Toby E. Stuart, 2000. "Interorganizational alliances and the performance of firms: a study of growth and innovation rates in a high‐technology industry," Strategic Management Journal, Wiley Blackwell, vol. 21(8), pages 791-811, August.
    18. Chang, Shann-Bin, 2012. "Using patent analysis to establish technological position: Two different strategic approaches," Technological Forecasting and Social Change, Elsevier, vol. 79(1), pages 3-15.
    19. Kaiser, Ulrich, 2002. "Measuring knowledge spillovers in manufacturing and services: an empirical assessment of alternative approaches," Research Policy, Elsevier, vol. 31(1), pages 125-144, January.
    20. Katia Angue & Cécile Ayerbe & Liliana Mitkova, 2014. "A method using two dimensions of the patent classification for measuring the technological proximity: an application in identifying a potential R&D partner in biotechnology," Post-Print halshs-00925820, HAL.
    21. Caroline S. Wagner, 2005. "Six case studies of international collaboration in science," Scientometrics, Springer;Akadémiai Kiadó, vol. 62(1), pages 3-26, January.
    22. Benner, Mary & Waldfogel, Joel, 2008. "Close to you? Bias and precision in patent-based measures of technological proximity," Research Policy, Elsevier, vol. 37(9), pages 1556-1567, October.
    23. Jaffe, Adam B, 1986. "Technological Opportunity and Spillovers of R&D: Evidence from Firms' Patents, Profits, and Market Value," American Economic Review, American Economic Association, vol. 76(5), pages 984-1001, December.
    24. Liwen Vaughan & Justin You, 2006. "Comparing business competition positions based on Web co-link data: The global market vs. the Chinese market," Scientometrics, Springer;Akadémiai Kiadó, vol. 68(3), pages 611-628, September.
    25. Becker, Wolfgang & Dietz, Jurgen, 2004. "R&D cooperation and innovation activities of firms--evidence for the German manufacturing industry," Research Policy, Elsevier, vol. 33(2), pages 209-223, March.
    26. Wang, Benjamin & Hsieh, Chih-Hung, 2015. "Measuring the value of patents with fuzzy multiple criteria decision making: insight into the practices of the Industrial Technology Research Institute," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 263-275.
    27. Zvi Griliches, 1998. "Patent Statistics as Economic Indicators: A Survey," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 287-343, National Bureau of Economic Research, Inc.
    28. Hsi-Yin Yeh & Yi-Shan Sung & Hsiao-Wen Yang & Wan-Chu Tsai & Dar-Zen Chen, 2013. "The bibliographic coupling approach to filter the cited and uncited patent citations: a case of electric vehicle technology," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(1), pages 75-93, January.
    29. Bar, Talia & Leiponen, Aija, 2012. "A measure of technological distance," Economics Letters, Elsevier, vol. 116(3), pages 457-459.
    30. Fung, Michael K., 2003. "Technological proximity and co-movements of stock returns," Economics Letters, Elsevier, vol. 79(1), pages 131-136, April.
    31. Ernst, Holger, 2003. "Patent information for strategic technology management," World Patent Information, Elsevier, vol. 25(3), pages 233-242, September.
    32. Chunjuan Luan & Zeyuan Liu & Xianwen Wang, 2013. "Divergence and convergence: technology-relatedness evolution in solar energy industry," Scientometrics, Springer;Akadémiai Kiadó, vol. 97(2), pages 461-475, November.
    33. Frank T. Rothaermel & Maria Tereza Alexandre, 2009. "Ambidexterity in Technology Sourcing: The Moderating Role of Absorptive Capacity," Organization Science, INFORMS, vol. 20(4), pages 759-780, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Caviggioli, F. & Colombelli, A. & De Marco, A. & Scellato, G. & Ughetto, E., 2023. "The impact of university patenting on the technological specialization of European regions: a technology-level analysis," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    2. Choi, Jaewoong & Yoon, Janghyeok, 2022. "Measuring knowledge exploration distance at the patent level: Application of network embedding and citation analysis," Journal of Informetrics, Elsevier, vol. 16(2).
    3. Katsuyuki Kaneko & Yuya Kajikawa, 2023. "Novelty Score and Technological Relatedness Measurement Using Patent Information in Mergers and Acquisitions: Case Study in the Japanese Electric Motor Industry," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 24(2), pages 163-177, June.
    4. Huang, Hung-Chun & Su, Hsin-Ning, 2019. "The innovative fulcrums of technological interdisciplinarity: An analysis of technology fields in patents," Technovation, Elsevier, vol. 84, pages 59-70.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katsuyuki Kaneko & Yuya Kajikawa, 2023. "Novelty Score and Technological Relatedness Measurement Using Patent Information in Mergers and Acquisitions: Case Study in the Japanese Electric Motor Industry," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 24(2), pages 163-177, June.
    2. Katia Angue & Cécile Ayerbe & Liliana Mitkova, 2014. "A method using two dimensions of the patent classification for measuring the technological proximity: an application in identifying a potential R&D partner in biotechnology," The Journal of Technology Transfer, Springer, vol. 39(5), pages 716-747, October.
    3. Bart Leten & Rene Belderbos & Bart Van Looy, 2016. "Entry and Technological Performance in New Technology Domains: Technological Opportunities, Technology Competition and Technological Relatedness," Journal of Management Studies, Wiley Blackwell, vol. 53(8), pages 1257-1291, December.
    4. Christian Omobhude & Shih-Hsin Chen, 2019. "The Roles and Measurements of Proximity in Sustained Technology Development: A Literature Review," Sustainability, MDPI, vol. 11(1), pages 1-30, January.
    5. Antonio Messeni Petruzzelli & Daniele Rotolo & Vito Albino, 2014. "Determinants of Patent Citations in Biotechnology: An Analysis of Patent Influence Across the Industrial and Organizational Boundaries," SPRU Working Paper Series 2014-05, SPRU - Science Policy Research Unit, University of Sussex Business School.
    6. Blazsek, Szabolcs & Escribano, Álvaro, 2012. "Patents, secret innovations and firm's rate of return : differential effects of the innovation leader," UC3M Working papers. Economics we1202, Universidad Carlos III de Madrid. Departamento de Economía.
    7. Jason Li-Ying & Yuandi Wang & Lutao Ning, 2016. "How do dynamic capabilities transform external technologies into firms’ renewed technological resources? – A mediation model," Asia Pacific Journal of Management, Springer, vol. 33(4), pages 1009-1036, December.
    8. Kathryn Rudie Harrigan & Maria Chiara DiGuardo, 2017. "Sustainability of patent-based competitive advantage in the U.S. communications services industry," The Journal of Technology Transfer, Springer, vol. 42(6), pages 1334-1361, December.
    9. Jackie Krafft & Francesco Quatraro & Pier Saviotti, 2014. "Knowledge characteristics and the dynamics of technological alliances in pharmaceuticals: empirical evidence from Europe, US and Japan," Journal of Evolutionary Economics, Springer, vol. 24(3), pages 587-622, July.
    10. Massimiliano Agovino & Luigi Aldieri & Antonio Garofalo & Concetto Paolo Vinci, 2017. "Quality and quantity in the innovation process of firms: a statistical approach," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(4), pages 1579-1591, July.
    11. Wim Vanhaverbeke & Victor Gilsing & Bonnie Beerkens & Geert Duysters, 2009. "The Role of Alliance Network Redundancy in the Creation of Core and Non‐core Technologies," Journal of Management Studies, Wiley Blackwell, vol. 46(2), pages 215-244, March.
    12. Armin Anzenbacher & Marcus Wagner, 2020. "The role of exploration and exploitation for innovation success: effects of business models on organizational ambidexterity in the semiconductor industry," International Entrepreneurship and Management Journal, Springer, vol. 16(2), pages 571-594, June.
    13. Hugo Ernesto Martínez Ardila & Julián Eduardo Mora Moreno & Jaime Alberto Camacho Pico, 2020. "Networks of collaborative alliances: the second order interfirm technological distance and innovation performance," The Journal of Technology Transfer, Springer, vol. 45(4), pages 1255-1282, August.
    14. Stephanie Lange & Marcus Wagner, 2021. "The influence of exploratory versus exploitative acquisitions on innovation output in the biotechnology industry," Small Business Economics, Springer, vol. 56(2), pages 659-680, February.
    15. Kuan, Chung-Huei & Chen, Dar-Zen & Huang, Mu-Hsuan, 2019. "Bibliographically coupled patents: Their temporal pattern and combined relevance," Journal of Informetrics, Elsevier, vol. 13(4).
    16. Guan, Jian Cheng & Yan, Yan, 2016. "Technological proximity and recombinative innovation in the alternative energy field," Research Policy, Elsevier, vol. 45(7), pages 1460-1473.
    17. Avimanyu Datta, 2016. "Antecedents To Radical Innovations: A Longitudinal Look At Firms In The Information Technology Industry By Aggregation Of Patents," International Journal of Innovation Management (ijim), World Scientific Publishing Co. Pte. Ltd., vol. 20(07), pages 1-31, October.
    18. Vanhaverbeke, Wim & Li, Ying & Van de Vrande, Vareska, 2009. "The dual role of external corporate venturing in technological exploration," MPRA Paper 26488, University Library of Munich, Germany, revised 2010.
    19. Figueroa, Nicolás & Serrano, Carlos J., 2019. "Patent trading flows of small and large firms," Research Policy, Elsevier, vol. 48(7), pages 1601-1616.
    20. Koki Oikawa & Minoru Kitahara, 2017. "Technology Polarization," Working Papers e113, Tokyo Center for Economic Research.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:107:y:2016:i:3:d:10.1007_s11192-016-1888-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.