IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v105y2015i3d10.1007_s11192-015-1642-2.html
   My bibliography  Save this article

Open access and sources of full-text articles in Google Scholar in different subject fields

Author

Listed:
  • Hamid R. Jamali

    (Kharazmi University)

  • Majid Nabavi

    (Iranian Research Institute for Information Science and Technology)

Abstract

Google Scholar, a widely used academic search engine, plays a major role in finding free full-text versions of articles. But little is known about the sources of full-text files in Google Scholar. The aim of the study was to find out about the sources of full-text items and to look at subject differences in terms of number of versions, times cited, rate of open access availability and sources of full-text files. Three queries were created for each of 277 minor subject categories of Scopus. The queries were searched in Google Scholar and the first ten hits for each query were analyzed. Citations and patents were excluded from the results and the time frame was limited to 2004–2014. Results showed that 61.1 % of articles were accessible in full-text in Google Scholar; 80.8 % of full-text articles were publisher versions and 69.2 % of full-text articles were PDF. There was a significant difference between the means of times cited of full text items and non-full-text items. The highest rate of full text availability for articles belonged to life science (66.9 %). Publishers’ websites were the main source of bibliographic information for non-full-text articles. For full-text articles, educational (edu, ac.xx etc.) and org domains were top two sources of full text files. ResearchGate was the top single website providing full-text files (10.5 % of full-text articles).

Suggested Citation

  • Hamid R. Jamali & Majid Nabavi, 2015. "Open access and sources of full-text articles in Google Scholar in different subject fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1635-1651, December.
  • Handle: RePEc:spr:scient:v:105:y:2015:i:3:d:10.1007_s11192-015-1642-2
    DOI: 10.1007/s11192-015-1642-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-015-1642-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-015-1642-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gunther Eysenbach, 2006. "Citation Advantage of Open Access Articles," Working Papers id:626, eSocialSciences.
    2. Judit Bar-Ilan, 2008. "Which h-index? — A comparison of WoS, Scopus and Google Scholar," Scientometrics, Springer;Akadémiai Kiadó, vol. 74(2), pages 257-271, February.
    3. Joost C. F. Winter & Amir A. Zadpoor & Dimitra Dodou, 2014. "The expansion of Google Scholar versus Web of Science: a longitudinal study," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(2), pages 1547-1565, February.
    4. Isidro F. Aguillo, 2012. "Is Google Scholar useful for bibliometrics? A webometric analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(2), pages 343-351, May.
    5. Anne-Wil Harzing, 2014. "A longitudinal study of Google Scholar coverage between 2012 and 2013," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(1), pages 565-575, January.
    6. Kayvan Kousha & Mike Thelwall, 2008. "Sources of Google Scholar citations outside the Science Citation Index: A comparison between four science disciplines," Scientometrics, Springer;Akadémiai Kiadó, vol. 74(2), pages 273-294, February.
    7. Lokman I. Meho & Kiduk Yang, 2007. "Impact of data sources on citation counts and rankings of LIS faculty: Web of science versus scopus and google scholar," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 58(13), pages 2105-2125, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hamid R. Jamali, 2017. "Copyright compliance and infringement in ResearchGate full-text journal articles," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(1), pages 241-254, July.
    2. Mikael Laakso & Andrea Polonioli, 2018. "Open access in ethics research: an analysis of open access availability and author self-archiving behaviour in light of journal copyright restrictions," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(1), pages 291-317, July.
    3. Cristòfol Rovira & Lluís Codina & Frederic Guerrero-Solé & Carlos Lopezosa, 2019. "Ranking by Relevance and Citation Counts, a Comparative Study: Google Scholar, Microsoft Academic, WoS and Scopus," Future Internet, MDPI, vol. 11(9), pages 1-21, September.
    4. Martín-Martín, Alberto & Costas, Rodrigo & van Leeuwen, Thed & Delgado López-Cózar, Emilio, 2018. "Evidence of open access of scientific publications in Google Scholar: A large-scale analysis," Journal of Informetrics, Elsevier, vol. 12(3), pages 819-841.
    5. Cristòfol Rovira & Lluís Codina & Carlos Lopezosa, 2021. "Language Bias in the Google Scholar Ranking Algorithm," Future Internet, MDPI, vol. 13(2), pages 1-17, January.
    6. Sergio Copiello, 2019. "The open access citation premium may depend on the openness and inclusiveness of the indexing database, but the relationship is controversial because it is ambiguous where the open access boundary lie," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 995-1018, November.
    7. Halevi, Gali & Moed, Henk & Bar-Ilan, Judit, 2017. "Suitability of Google Scholar as a source of scientific information and as a source of data for scientific evaluation—Review of the Literature," Journal of Informetrics, Elsevier, vol. 11(3), pages 823-834.
    8. Li Zhang & Erin Watson, 2018. "The prevalence of green and grey open access: Where do physical science researchers archive their publications?," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(3), pages 2021-2035, December.
    9. Sergio Copiello & Pietro Bonifaci, 2018. "A few remarks on ResearchGate score and academic reputation," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(1), pages 301-306, January.
    10. Mikael Laakso & Juho Lindman, 2016. "Journal copyright restrictions and actual open access availability: a study of articles published in eight top information systems journals (2010–2014)," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(2), pages 1167-1189, November.
    11. Moed, Henk F. & Bar-Ilan, Judit & Halevi, Gali, 2016. "A new methodology for comparing Google Scholar and Scopus," Journal of Informetrics, Elsevier, vol. 10(2), pages 533-551.
    12. Debarshi Kumar Sanyal & Plaban Kumar Bhowmick & Partha Pratim Das & Samiran Chattopadhyay & T. Y. S. S. Santosh, 2019. "Enhancing access to scholarly publications with surrogate resources," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 1129-1164, November.
    13. Vivek Kumar Singh & Satya Swarup Srichandan & Hiran H. Lathabai, 2022. "ResearchGate and Google Scholar: how much do they differ in publications, citations and different metrics and why?," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(3), pages 1515-1542, March.
    14. Susanne Mikki, 2017. "Scholarly publications beyond pay-walls: increased citation advantage for open publishing," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(3), pages 1529-1538, December.
    15. Lepori, Benedetto & Thelwall, Michael & Hoorani, Bareerah Hafeez, 2018. "Which US and European Higher Education Institutions are visible in ResearchGate and what affects their RG score?," Journal of Informetrics, Elsevier, vol. 12(3), pages 806-818.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sergio Copiello, 2019. "The open access citation premium may depend on the openness and inclusiveness of the indexing database, but the relationship is controversial because it is ambiguous where the open access boundary lie," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 995-1018, November.
    2. Martin-Martin, Alberto & Orduna-Malea, Enrique & Harzing, Anne-Wil & Delgado López-Cózar, Emilio, 2017. "Can we use Google Scholar to identify highly-cited documents?," Journal of Informetrics, Elsevier, vol. 11(1), pages 152-163.
    3. Waltman, Ludo, 2016. "A review of the literature on citation impact indicators," Journal of Informetrics, Elsevier, vol. 10(2), pages 365-391.
    4. Enrique Orduna-Malea & Juan M. Ayllón & Alberto Martín-Martín & Emilio Delgado López-Cózar, 2015. "Methods for estimating the size of Google Scholar," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(3), pages 931-949, September.
    5. Moed, Henk F. & Bar-Ilan, Judit & Halevi, Gali, 2016. "A new methodology for comparing Google Scholar and Scopus," Journal of Informetrics, Elsevier, vol. 10(2), pages 533-551.
    6. Antonio Cavacini, 2015. "What is the best database for computer science journal articles?," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(3), pages 2059-2071, March.
    7. Michael Gusenbauer, 2019. "Google Scholar to overshadow them all? Comparing the sizes of 12 academic search engines and bibliographic databases," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(1), pages 177-214, January.
    8. Halevi, Gali & Moed, Henk & Bar-Ilan, Judit, 2017. "Suitability of Google Scholar as a source of scientific information and as a source of data for scientific evaluation—Review of the Literature," Journal of Informetrics, Elsevier, vol. 11(3), pages 823-834.
    9. Teja Koler-Povh & Primož Južnič & Goran Turk, 2014. "Impact of open access on citation of scholarly publications in the field of civil engineering," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(2), pages 1033-1045, February.
    10. Martín-Martín, Alberto & Orduna-Malea, Enrique & Thelwall, Mike & Delgado López-Cózar, Emilio, 2018. "Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories," Journal of Informetrics, Elsevier, vol. 12(4), pages 1160-1177.
    11. Peder Olesen Larsen & Markus Ins, 2010. "The rate of growth in scientific publication and the decline in coverage provided by Science Citation Index," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(3), pages 575-603, September.
    12. Judit Bar-Ilan, 2010. "Citations to the “Introduction to informetrics” indexed by WOS, Scopus and Google Scholar," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(3), pages 495-506, March.
    13. Maor Weinberger & Maayan Zhitomirsky-Geffet, 2021. "Diversity of success: measuring the scholarly performance diversity of tenured professors in the Israeli academia," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 2931-2970, April.
    14. Bornmann, Lutz & Marx, Werner & Schier, Hermann & Rahm, Erhard & Thor, Andreas & Daniel, Hans-Dieter, 2009. "Convergent validity of bibliometric Google Scholar data in the field of chemistry—Citation counts for papers that were accepted by Angewandte Chemie International Edition or rejected but published els," Journal of Informetrics, Elsevier, vol. 3(1), pages 27-35.
    15. Cristòfol Rovira & Lluís Codina & Frederic Guerrero-Solé & Carlos Lopezosa, 2019. "Ranking by Relevance and Citation Counts, a Comparative Study: Google Scholar, Microsoft Academic, WoS and Scopus," Future Internet, MDPI, vol. 11(9), pages 1-21, September.
    16. Cristòfol Rovira & Lluís Codina & Carlos Lopezosa, 2021. "Language Bias in the Google Scholar Ranking Algorithm," Future Internet, MDPI, vol. 13(2), pages 1-17, January.
    17. Christoph Bartneck, 2017. "Reviewers’ scores do not predict impact: bibliometric analysis of the proceedings of the human–robot interaction conference," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(1), pages 179-194, January.
    18. Muhammad Raheel & Samreen Ayaz & Muhammad Tanvir Afzal, 2018. "Evaluation of h-index, its variants and extensions based on publication age & citation intensity in civil engineering," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 1107-1127, March.
    19. Massimo Franceschet, 2010. "A comparison of bibliometric indicators for computer science scholars and journals on Web of Science and Google Scholar," Scientometrics, Springer;Akadémiai Kiadó, vol. 83(1), pages 243-258, April.
    20. Alberto Martín-Martín & Enrique Orduna-Malea & Emilio Delgado López-Cózar, 2018. "Coverage of highly-cited documents in Google Scholar, Web of Science, and Scopus: a multidisciplinary comparison," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 2175-2188, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:105:y:2015:i:3:d:10.1007_s11192-015-1642-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.