IDEAS home Printed from https://ideas.repec.org/a/spr/qualqt/v47y2013i1p57-78.html
   My bibliography  Save this article

Integrated analysis of content and construct validity of psychometric instruments

Author

Listed:
  • Byron Gajewski
  • Larry Price
  • Valorie Coffland
  • Diane Boyle
  • Marjorie Bott

Abstract

Establishing adequacy of psychometric properties of an instrument involves acquisition and evaluation of evidence based on item content and internal structure. Content validity evidence consists of subject matter experts providing quantitative ratings of the extent to which items are a representative sample of targeted domain. Evidence of internal structure includes factor analytic studies and examination of item interrelationships based on item responses from participants. Although subject matter expert ratings and participant response data are traditionally analyzed separately, each serves to inform the other in important ways. We propose integrating subject matter experts’ and participants’ data seamlessly to establish a unified model of validity evidence. The approach is applied to an instrument designed to measure nursing home culture change (i.e., resident-centered care). The proposed method has been demonstrated to be useful with a posterior distribution resulting in stable estimates of psychometric parameters superior to traditional analytic approaches. To illustrate the efficacy of the methodology, we present a simulation study and discuss its place in psychometric methods. Copyright Springer Science+Business Media B.V. 2013

Suggested Citation

  • Byron Gajewski & Larry Price & Valorie Coffland & Diane Boyle & Marjorie Bott, 2013. "Integrated analysis of content and construct validity of psychometric instruments," Quality & Quantity: International Journal of Methodology, Springer, vol. 47(1), pages 57-78, January.
  • Handle: RePEc:spr:qualqt:v:47:y:2013:i:1:p:57-78
    DOI: 10.1007/s11135-011-9503-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11135-011-9503-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11135-011-9503-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Susan Embretson, 1999. "Generating items during testing: Psychometric issues and models," Psychometrika, Springer;The Psychometric Society, vol. 64(4), pages 407-433, December.
    2. Garthwaite, Paul H. & Kadane, Joseph B. & O'Hagan, Anthony, 2005. "Statistical Methods for Eliciting Probability Distributions," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 680-701, June.
    3. Sik-Yum Lee, 1981. "A bayesian approach to confirmatory factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 46(2), pages 153-160, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ester Gilart & Isabel Lepiani & María Dueñas & Maria José Cantizano Nuñez & Belen Gutierrez Baena & Anna Bocchino, 2022. "Bereavement Needs Assessment in Nurses: Elaboration and Content Validation of a Professional Traumatic Grief Scale," IJERPH, MDPI, vol. 19(5), pages 1-15, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maarten Ijzerman & Lotte Steuten, 2011. "Early assessment of medical technologies to inform product development and market access," Applied Health Economics and Health Policy, Springer, vol. 9(5), pages 331-347, September.
    2. Claire Copeland & Britta Turner & Gareth Powells & Kevin Wilson, 2022. "In Search of Complementarity: Insights from an Exercise in Quantifying Qualitative Energy Futures," Energies, MDPI, vol. 15(15), pages 1-21, July.
    3. Robert Stewart & Marie Urban & Samantha Duchscherer & Jason Kaufman & April Morton & Gautam Thakur & Jesse Piburn & Jessica Moehl, 2016. "A Bayesian machine learning model for estimating building occupancy from open source data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1929-1956, April.
    4. Nicholas M. Kiefer, 2011. "Default estimation, correlated defaults, and expert information," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(2), pages 173-192, March.
    5. Miller, Joshua Benjamin & Sanjurjo, Adam, 2018. "How Experience Confirms the Gambler's Fallacy when Sample Size is Neglected," OSF Preprints m5xsk, Center for Open Science.
    6. Dai, Min & Jia, Yanwei & Kou, Steven, 2021. "The wisdom of the crowd and prediction markets," Journal of Econometrics, Elsevier, vol. 222(1), pages 561-578.
    7. A Zuashkiani & D Banjevic & A K S Jardine, 2009. "Estimating parameters of proportional hazards model based on expert knowledge and statistical data," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(12), pages 1621-1636, December.
    8. K J Wilson & M Farrow, 2010. "Bayes linear kinematics in the analysis of failure rates and failure time distributions," Journal of Risk and Reliability, , vol. 224(4), pages 309-321, December.
    9. Jiang, Xiaomo & Mahadevan, Sankaran, 2009. "Bayesian structural equation modeling method for hierarchical model validation," Reliability Engineering and System Safety, Elsevier, vol. 94(4), pages 796-809.
    10. Ibsen Chivatá Cárdenas & Saad S.H. Al‐Jibouri & Johannes I.M. Halman & Frits A. van Tol, 2014. "Modeling Risk‐Related Knowledge in Tunneling Projects," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 323-339, February.
    11. A. El-Bassiouny & M. Jones, 2009. "A bivariate F distribution with marginals on arbitrary numerator and denominator degrees of freedom, and related bivariate beta and t distributions," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 18(4), pages 465-481, November.
    12. Nicholas M. Kiefer, 2017. "Correlated defaults, temporal correlation, expert information and predictability of default rates," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 699-712, October.
    13. Azamat Abdymomunov & Sharon Blei & Bakhodir Ergashev, 2015. "Integrating Stress Scenarios into Risk Quantification Models," Journal of Financial Services Research, Springer;Western Finance Association, vol. 47(1), pages 57-79, February.
    14. Hanneke Geerlings & Cees Glas & Wim Linden, 2011. "Modeling Rule-Based Item Generation," Psychometrika, Springer;The Psychometric Society, vol. 76(2), pages 337-359, April.
    15. Sun-Joo Cho & Paul Boeck & Susan Embretson & Sophia Rabe-Hesketh, 2014. "Additive Multilevel Item Structure Models with Random Residuals: Item Modeling for Explanation and Item Generation," Psychometrika, Springer;The Psychometric Society, vol. 79(1), pages 84-104, January.
    16. Clancy, Damian & Tanner, Jason E. & McWilliam, Stephen & Spencer, Matthew, 2010. "Quantifying parameter uncertainty in a coral reef model using Metropolis-Coupled Markov Chain Monte Carlo," Ecological Modelling, Elsevier, vol. 221(10), pages 1337-1347.
    17. Alfredo Bateman y Javier E. Martinez & Javier Esteban Martinez, 2010. "Cuaderno 4: Análisis de las fuentes de oferta y demanda en el mercado de divisas," Cuadernos de Desarrollo Económico 7586, Secretaría Distrital de Desarrollo Económico.
    18. Nicholas Longford, 2014. "Policy-related small-area estimation," Economics Working Papers 1427, Department of Economics and Business, Universitat Pompeu Fabra.
    19. Wilson, Kevin J., 2017. "An investigation of dependence in expert judgement studies with multiple experts," International Journal of Forecasting, Elsevier, vol. 33(1), pages 325-336.
    20. Meng, Xiaochun & Taylor, James W., 2022. "Comparing probabilistic forecasts of the daily minimum and maximum temperature," International Journal of Forecasting, Elsevier, vol. 38(1), pages 267-281.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:qualqt:v:47:y:2013:i:1:p:57-78. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.