IDEAS home Printed from https://ideas.repec.org/a/spr/opsear/v57y2020i2d10.1007_s12597-019-00428-6.html
   My bibliography  Save this article

Inverse and reverse balanced facility location problems with variable edge lengths on trees

Author

Listed:
  • Shahede Omidi

    (Shahrood University of Technology)

  • Jafar Fathali

    (Shahrood University of Technology)

  • Morteza Nazari

    (Shahrood University of Technology)

Abstract

This paper deals with the inverse and reverse balanced facility location problems with considering the variable edge lengths. The aim of the inverse problem is modifying the length of edges with minimum cost, such that the difference between the maximum and minimum weights of clients, allocated to the given facilities is minimized. On the other hand, the reverse case of the balanced facility location problem considers the modifying the lengths of edges with a given budget constraint, such that the difference between the maximum and minimum weights of vertices, allocated to the given facilities is reduced as much as possible. Two algorithms with time complexity O(nlogn) are presented for the inverse and reverse balanced 2-facility location problems.

Suggested Citation

  • Shahede Omidi & Jafar Fathali & Morteza Nazari, 2020. "Inverse and reverse balanced facility location problems with variable edge lengths on trees," OPSEARCH, Springer;Operational Research Society of India, vol. 57(2), pages 261-273, June.
  • Handle: RePEc:spr:opsear:v:57:y:2020:i:2:d:10.1007_s12597-019-00428-6
    DOI: 10.1007/s12597-019-00428-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12597-019-00428-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12597-019-00428-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Behrooz Alizadeh & Esmaeil Afrashteh & Fahimeh Baroughi, 2018. "Combinatorial Algorithms for Some Variants of Inverse Obnoxious Median Location Problem on Tree Networks," Journal of Optimization Theory and Applications, Springer, vol. 178(3), pages 914-934, September.
    2. Marsh, Michael T. & Schilling, David A., 1994. "Equity measurement in facility location analysis: A review and framework," European Journal of Operational Research, Elsevier, vol. 74(1), pages 1-17, April.
    3. Kien Trung Nguyen & Ali Reza Sepasian, 2016. "The inverse 1-center problem on trees with variable edge lengths under Chebyshev norm and Hamming distance," Journal of Combinatorial Optimization, Springer, vol. 32(3), pages 872-884, October.
    4. Kien Trung Nguyen, 2016. "Inverse 1-Median Problem on Block Graphs with Variable Vertex Weights," Journal of Optimization Theory and Applications, Springer, vol. 168(3), pages 944-957, March.
    5. Xiucui Guan & Binwu Zhang, 2012. "Inverse 1-median problem on trees under weighted Hamming distance," Journal of Global Optimization, Springer, vol. 54(1), pages 75-82, September.
    6. Fahimeh Baroughi Bonab & Rainer Burkard & Elisabeth Gassner, 2011. "Inverse p-median problems with variable edge lengths," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 73(2), pages 263-280, April.
    7. Zhang, Jianzhong & Liu, Zhenhong & Ma, Zhongfan, 2000. "Some reverse location problems," European Journal of Operational Research, Elsevier, vol. 124(1), pages 77-88, July.
    8. Marín, Alfredo, 2011. "The discrete facility location problem with balanced allocation of customers," European Journal of Operational Research, Elsevier, vol. 210(1), pages 27-38, April.
    9. Oded Berman & Zvi Drezner & Arie Tamir & George Wesolowsky, 2009. "Optimal location with equitable loads," Annals of Operations Research, Springer, vol. 167(1), pages 307-325, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alizadeh, Behrooz & Afrashteh, Esmaeil, 2020. "Budget-constrained inverse median facility location problem on tree networks," Applied Mathematics and Computation, Elsevier, vol. 375(C).
    2. Behrooz Alizadeh & Esmaeil Afrashteh & Fahimeh Baroughi, 2018. "Combinatorial Algorithms for Some Variants of Inverse Obnoxious Median Location Problem on Tree Networks," Journal of Optimization Theory and Applications, Springer, vol. 178(3), pages 914-934, September.
    3. Esmaeil Afrashteh & Behrooz Alizadeh & Fahimeh Baroughi & Kien Trung Nguyen, 2018. "Linear Time Optimal Approaches for Max-Profit Inverse 1-Median Location Problems," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(05), pages 1-22, October.
    4. Behrooz Alizadeh & Somayeh Bakhteh, 2017. "A modified firefly algorithm for general inverse p-median location problems under different distance norms," OPSEARCH, Springer;Operational Research Society of India, vol. 54(3), pages 618-636, September.
    5. Jafar Fathali & Mehdi Zaferanieh, 2023. "The balanced 2-median and 2-maxian problems on a tree," Journal of Combinatorial Optimization, Springer, vol. 45(2), pages 1-16, March.
    6. Ali Reza Sepasian, 2019. "Reverse 1-maxian problem with keeping existing 1-median," OPSEARCH, Springer;Operational Research Society of India, vol. 56(1), pages 1-13, March.
    7. Kien Trung Nguyen & Huong Nguyen-Thu & Nguyen Thanh Hung, 2018. "On the complexity of inverse convex ordered 1-median problem on the plane and on tree networks," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 88(2), pages 147-159, October.
    8. Karsu, Özlem & Morton, Alec, 2015. "Inequity averse optimization in operational research," European Journal of Operational Research, Elsevier, vol. 245(2), pages 343-359.
    9. Kien Trung Nguyen & Ali Reza Sepasian, 2016. "The inverse 1-center problem on trees with variable edge lengths under Chebyshev norm and Hamming distance," Journal of Combinatorial Optimization, Springer, vol. 32(3), pages 872-884, October.
    10. Rongbing Huang, 2016. "A short note on locating facilities on a path to minimize load range equity measure," Annals of Operations Research, Springer, vol. 246(1), pages 363-369, November.
    11. Kien Trung Nguyen, 2019. "The inverse 1-center problem on cycles with variable edge lengths," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(1), pages 263-274, March.
    12. Drezner, Tammy & Drezner, Zvi & Hulliger, Beat, 2014. "The Quintile Share Ratio in location analysis," European Journal of Operational Research, Elsevier, vol. 238(1), pages 166-174.
    13. Xianyue Li & Xichao Shu & Huijing Huang & Jingjing Bai, 2019. "Capacitated partial inverse maximum spanning tree under the weighted Hamming distance," Journal of Combinatorial Optimization, Springer, vol. 38(4), pages 1005-1018, November.
    14. Faiz, Tasnim Ibn & Noor-E-Alam, Md, 2019. "Data center supply chain configuration design: A two-stage decision approach," Socio-Economic Planning Sciences, Elsevier, vol. 66(C), pages 119-135.
    15. Xu, Jing & Murray, Alan T. & Church, Richard L. & Wei, Ran, 2023. "Service allocation equity in location coverage analytics," European Journal of Operational Research, Elsevier, vol. 305(1), pages 21-37.
    16. Marín, Alfredo, 2011. "The discrete facility location problem with balanced allocation of customers," European Journal of Operational Research, Elsevier, vol. 210(1), pages 27-38, April.
    17. Baldomero-Naranjo, Marta & Kalcsics, Jörg & Marín, Alfredo & Rodríguez-Chía, Antonio M., 2022. "Upgrading edges in the maximal covering location problem," European Journal of Operational Research, Elsevier, vol. 303(1), pages 14-36.
    18. Jesús Sánchez-Oro & Ana D. López-Sánchez & Anna Martínez-Gavara & Alfredo G. Hernández-Díaz & Abraham Duarte, 2021. "A Hybrid Strategic Oscillation with Path Relinking Algorithm for the Multiobjective k -Balanced Center Location Problem," Mathematics, MDPI, vol. 9(8), pages 1-21, April.
    19. Roghayeh Etemad & Behrooz Alizadeh, 2018. "Reverse selective obnoxious center location problems on tree graphs," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 87(3), pages 431-450, June.
    20. Nguyen, Kien Trung & Chassein, André, 2015. "The inverse convex ordered 1-median problem on trees under Chebyshev norm and Hamming distance," European Journal of Operational Research, Elsevier, vol. 247(3), pages 774-781.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:opsear:v:57:y:2020:i:2:d:10.1007_s12597-019-00428-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.