IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v22y2022i2d10.1007_s12351-020-00586-2.html
   My bibliography  Save this article

Location of facilities and network design for reverse logistics of lithium-ion batteries in Sweden

Author

Listed:
  • M. Tadaros

    (Luleå University of Technology)

  • A. Migdalas

    (Luleå University of Technology)

  • B. Samuelsson

    (Luleå University of Technology)

  • A. Segerstedt

    (Luleå University of Technology)

Abstract

Estimations of the amount of lithium-ion batteries reaching their end-of-life in 2025 and the amount being recycled indicates large deviations. To enable an efficient recycling process a well-defined and efficient supply chain network for the recovery of discarded lithium-ion batteries must be put in place. This includes analyzing the needs and restrictions of such a network. The aim of this paper is to provide decision support tools, to analyze input, and optimize a future supply chain for discarded lithium-ion batteries. A mixed integer programming model is developed and applied to the Swedish market. The findings show that several aspects will affect a reverse supply chain for discarded lithium-ion batteries, many of which are still uncertain and hard to predict.

Suggested Citation

  • M. Tadaros & A. Migdalas & B. Samuelsson & A. Segerstedt, 2022. "Location of facilities and network design for reverse logistics of lithium-ion batteries in Sweden," Operational Research, Springer, vol. 22(2), pages 895-915, April.
  • Handle: RePEc:spr:operea:v:22:y:2022:i:2:d:10.1007_s12351-020-00586-2
    DOI: 10.1007/s12351-020-00586-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-020-00586-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-020-00586-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Klose, Andreas & Drexl, Andreas, 2005. "Facility location models for distribution system design," European Journal of Operational Research, Elsevier, vol. 162(1), pages 4-29, April.
    2. Björn Samuelsson, 2016. "Estimating distribution costs in a supply chain network optimisation tool, a case study," Operational Research, Springer, vol. 16(3), pages 469-499, October.
    3. Melo, M.T. & Nickel, S. & Saldanha-da-Gama, F., 2009. "Facility location and supply chain management - A review," European Journal of Operational Research, Elsevier, vol. 196(2), pages 401-412, July.
    4. Fleischmann, Moritz & Bloemhof-Ruwaard, Jacqueline M. & Dekker, Rommert & van der Laan, Erwin & van Nunen, Jo A. E. E. & Van Wassenhove, Luk N., 1997. "Quantitative models for reverse logistics: A review," European Journal of Operational Research, Elsevier, vol. 103(1), pages 1-17, November.
    5. Agrawal, Saurabh & Singh, Rajesh K. & Murtaza, Qasim, 2015. "A literature review and perspectives in reverse logistics," Resources, Conservation & Recycling, Elsevier, vol. 97(C), pages 76-92.
    6. Farahani, Reza Zanjirani & Rezapour, Shabnam & Drezner, Tammy & Fallah, Samira, 2014. "Competitive supply chain network design: An overview of classifications, models, solution techniques and applications," Omega, Elsevier, vol. 45(C), pages 92-118.
    7. Mark S. Daskin & Lawrence V. Snyder & Rosemary T. Berger, 2005. "Facility Location in Supply Chain Design," Springer Books, in: André Langevin & Diane Riopel (ed.), Logistics Systems: Design and Optimization, chapter 0, pages 39-65, Springer.
    8. Richa, Kirti & Babbitt, Callie W. & Gaustad, Gabrielle & Wang, Xue, 2014. "A future perspective on lithium-ion battery waste flows from electric vehicles," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 63-76.
    9. V Jayaraman & V D R Guide & R Srivastava, 1999. "A closed-loop logistics model for remanufacturing," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(5), pages 497-508, May.
    10. Fleischmann, Mortiz & Krikke, Hans Ronald & Dekker, Rommert & Flapper, Simme Douwe P., 2000. "A characterisation of logistics networks for product recovery," Omega, Elsevier, vol. 28(6), pages 653-666, December.
    11. Jayaraman, Vaidyanathan & Patterson, Raymond A. & Rolland, Erik, 2003. "The design of reverse distribution networks: Models and solution procedures," European Journal of Operational Research, Elsevier, vol. 150(1), pages 128-149, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sarfaraz Hashemkhani Zolfani & Ramin Bazrafshan & Fatih Ecer & Çağlar Karamaşa, 2022. "The Suitability-Feasibility-Acceptability Strategy Integrated with Bayesian BWM-MARCOS Methods to Determine the Optimal Lithium Battery Plant Located in South America," Mathematics, MDPI, vol. 10(14), pages 1-18, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Melo, M.T. & Nickel, S. & Saldanha-da-Gama, F., 2009. "Facility location and supply chain management - A review," European Journal of Operational Research, Elsevier, vol. 196(2), pages 401-412, July.
    2. Toso, Eli Angela V. & Alem, Douglas, 2014. "Effective location models for sorting recyclables in public management," European Journal of Operational Research, Elsevier, vol. 234(3), pages 839-860.
    3. Srivastava, Samir K., 2008. "Network design for reverse logistics," Omega, Elsevier, vol. 36(4), pages 535-548, August.
    4. Pradip K. Bhaumik, 2015. "Supply Chain Network Design Based on Integration of Forward and Reverse Logistics," Global Business Review, International Management Institute, vol. 16(4), pages 680-699, August.
    5. L K Chu & Y Shi & S Lin & D Sculli & J Ni, 2010. "Fuzzy chance-constrained programming model for a multi-echelon reverse logistics network for household appliances," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(4), pages 551-560, April.
    6. Van Engeland, Jens & Beliën, Jeroen & De Boeck, Liesje & De Jaeger, Simon, 2020. "Literature review: Strategic network optimization models in waste reverse supply chains," Omega, Elsevier, vol. 91(C).
    7. Tancrez, Jean-Sébastien & Lange, Jean-Charles & Semal, Pierre, 2012. "A location-inventory model for large three-level supply chains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(2), pages 485-502.
    8. Agrawal, Saurabh & Singh, Rajesh K. & Murtaza, Qasim, 2015. "A literature review and perspectives in reverse logistics," Resources, Conservation & Recycling, Elsevier, vol. 97(C), pages 76-92.
    9. Schweiger, Katharina & Sahamie, Ramin, 2013. "A hybrid Tabu Search approach for the design of a paper recycling network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 50(C), pages 98-119.
    10. Gilani, Hani & Sahebi, Hadi, 2022. "A data-driven robust optimization model by cutting hyperplanes on vaccine access uncertainty in COVID-19 vaccine supply chain," Omega, Elsevier, vol. 110(C).
    11. Vidovic, Milorad & Dimitrijevic, Branka & Ratkovic, Branislava & Simic, Vladimir, 2011. "A novel covering approach to positioning ELV collection points," Resources, Conservation & Recycling, Elsevier, vol. 57(C), pages 1-9.
    12. Saberi, Sara & Cruz, Jose M. & Sarkis, Joseph & Nagurney, Anna, 2018. "A competitive multiperiod supply chain network model with freight carriers and green technology investment option," European Journal of Operational Research, Elsevier, vol. 266(3), pages 934-949.
    13. Nezamoddini, Nasim & Gholami, Amirhosein & Aqlan, Faisal, 2020. "A risk-based optimization framework for integrated supply chains using genetic algorithm and artificial neural networks," International Journal of Production Economics, Elsevier, vol. 225(C).
    14. Schultmann, Frank & Zumkeller, Moritz & Rentz, Otto, 2006. "Modeling reverse logistic tasks within closed-loop supply chains: An example from the automotive industry," European Journal of Operational Research, Elsevier, vol. 171(3), pages 1033-1050, June.
    15. Mallidis, Ioannis & Dekker, Rommert & Vlachos, Dimitrios, 2012. "The impact of greening on supply chain design and cost: a case for a developing region," Journal of Transport Geography, Elsevier, vol. 22(C), pages 118-128.
    16. Piotr Sawicki & Hanna Sawicka, 2021. "Optimisation of the Two-Tier Distribution System in Omni-Channel Environment," Energies, MDPI, vol. 14(22), pages 1-22, November.
    17. Aksen, Deniz & Aras, Necati & Karaarslan, Ayse Gönül, 2009. "Design and analysis of government subsidized collection systems for incentive-dependent returns," International Journal of Production Economics, Elsevier, vol. 119(2), pages 308-327, June.
    18. Sabharwal, Srishti & Garg, Suresh, 2013. "Determining cost effectiveness index of remanufacturing: A graph theoretic approach," International Journal of Production Economics, Elsevier, vol. 144(2), pages 521-532.
    19. Cardoso, Sónia R. & Barbosa-Póvoa, Ana Paula F.D. & Relvas, Susana, 2013. "Design and planning of supply chains with integration of reverse logistics activities under demand uncertainty," European Journal of Operational Research, Elsevier, vol. 226(3), pages 436-451.
    20. Diabat, Ali & Kannan, Devika & Kaliyan, Mathiyazhagan & Svetinovic, Davor, 2013. "An optimization model for product returns using genetic algorithms and artificial immune system," Resources, Conservation & Recycling, Elsevier, vol. 74(C), pages 156-169.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:22:y:2022:i:2:d:10.1007_s12351-020-00586-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.