IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v21y2021i2d10.1007_s12351-019-00472-6.html
   My bibliography  Save this article

Quickest flow over time network interdiction: mathematical formulation and a solution method

Author

Listed:
  • Shahram Morowati-Shalilvand

    (University of Tabriz)

  • Sedaghat Shahmorad

    (University of Tabriz)

  • Kamal Mirnia

    (University of Tabriz)

  • Javad Mehri-Tekmeh

    (University of Tabriz)

Abstract

This paper proposes a new problem entitled as “the quickest flow over time network interdiction problem”. This problem stands for removing some of network links using a limited interdiction resource with the aim of maximizing the minimum time required to transfer a predefined flow value through a given network. We formulate the quickest flow problem as a linear fractional programming problem and then, we transform it to a linear formulation. Using the linear formulation of the quickest flow problem we formulate the quickest flow network interdiction problem as a mixed integer linear programming problem. We also provide an improved formulation for the quickest flow network interdiction problem which is computationally more efficient than basic linear formulation. Finally, we apply the basic and improved formulations of the quickest flow network interdiction problem on a real world network and several grid networks.

Suggested Citation

  • Shahram Morowati-Shalilvand & Sedaghat Shahmorad & Kamal Mirnia & Javad Mehri-Tekmeh, 2021. "Quickest flow over time network interdiction: mathematical formulation and a solution method," Operational Research, Springer, vol. 21(2), pages 1179-1209, June.
  • Handle: RePEc:spr:operea:v:21:y:2021:i:2:d:10.1007_s12351-019-00472-6
    DOI: 10.1007/s12351-019-00472-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-019-00472-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-019-00472-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bruce Hoppe & Éva Tardos, 2000. "The Quickest Transshipment Problem," Mathematics of Operations Research, INFORMS, vol. 25(1), pages 36-62, February.
    2. Johannes O. Royset & R. Kevin Wood, 2007. "Solving the Bi-Objective Maximum-Flow Network-Interdiction Problem," INFORMS Journal on Computing, INFORMS, vol. 19(2), pages 175-184, May.
    3. Kelly J. Cormican & David P. Morton & R. Kevin Wood, 1998. "Stochastic Network Interdiction," Operations Research, INFORMS, vol. 46(2), pages 184-197, April.
    4. Akgün, Ibrahim & Tansel, Barbaros Ç. & Kevin Wood, R., 2011. "The multi-terminal maximum-flow network-interdiction problem," European Journal of Operational Research, Elsevier, vol. 211(2), pages 241-251, June.
    5. L. R. Ford & D. R. Fulkerson, 1958. "Constructing Maximal Dynamic Flows from Static Flows," Operations Research, INFORMS, vol. 6(3), pages 419-433, June.
    6. Bruce Golden, 1978. "A problem in network interdiction," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 25(4), pages 711-713, December.
    7. A. Charnes & W. W. Cooper, 1962. "Programming with linear fractional functionals," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 9(3‐4), pages 181-186, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abumoslem Mohammadi & Javad Tayyebi, 2019. "Maximum Capacity Path Interdiction Problem with Fixed Costs," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(04), pages 1-21, August.
    2. Chaya Losada & M. Scaparra & Richard Church & Mark Daskin, 2012. "The stochastic interdiction median problem with disruption intensity levels," Annals of Operations Research, Springer, vol. 201(1), pages 345-365, December.
    3. Dimitris Bertsimas & Ebrahim Nasrabadi & Sebastian Stiller, 2013. "Robust and Adaptive Network Flows," Operations Research, INFORMS, vol. 61(5), pages 1218-1242, October.
    4. Smith, J. Cole & Song, Yongjia, 2020. "A survey of network interdiction models and algorithms," European Journal of Operational Research, Elsevier, vol. 283(3), pages 797-811.
    5. Brian Lunday & Hanif Sherali, 2012. "Network interdiction to minimize the maximum probability of evasion with synergy between applied resources," Annals of Operations Research, Springer, vol. 196(1), pages 411-442, July.
    6. Claudio Contardo & Jorge A. Sefair, 2022. "A Progressive Approximation Approach for the Exact Solution of Sparse Large-Scale Binary Interdiction Games," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 890-908, March.
    7. Tayyebi, Javad & Mitra, Ankan & Sefair, Jorge A., 2023. "The continuous maximum capacity path interdiction problem," European Journal of Operational Research, Elsevier, vol. 305(1), pages 38-52.
    8. Jabarzare, Ziba & Zolfagharinia, Hossein & Najafi, Mehdi, 2020. "Dynamic interdiction networks with applications in illicit supply chains," Omega, Elsevier, vol. 96(C).
    9. Xiang, Yin, 2023. "Minimizing the maximal reliable path with a nodal interdiction model considering resource sharing," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    10. Juan S. Borrero & Leonardo Lozano, 2021. "Modeling Defender-Attacker Problems as Robust Linear Programs with Mixed-Integer Uncertainty Sets," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1570-1589, October.
    11. Yuya Higashikawa & Naoki Katoh, 2019. "A Survey on Facility Location Problems in Dynamic Flow Networks," The Review of Socionetwork Strategies, Springer, vol. 13(2), pages 163-208, October.
    12. Harald Held & Raymond Hemmecke & David L. Woodruff, 2005. "A decomposition algorithm applied to planning the interdiction of stochastic networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(4), pages 321-328, June.
    13. Nguyen, Di H. & Smith, J. Cole, 2022. "Network interdiction with asymmetric cost uncertainty," European Journal of Operational Research, Elsevier, vol. 297(1), pages 239-251.
    14. Bloch, Francis & Chatterjee, Kalyan & Dutta, Bhaskar, 2023. "Attack and interception in networks," Theoretical Economics, Econometric Society, vol. 18(4), November.
    15. Urmila Pyakurel & Tanka Nath Dhamala, 2017. "Continuous Dynamic Contraflow Approach for Evacuation Planning," Annals of Operations Research, Springer, vol. 253(1), pages 573-598, June.
    16. Víctor Blanco & Elena Fernández & Yolanda Hinojosa, 2023. "Hub Location with Protection Under Interhub Link Failures," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 966-985, September.
    17. Starita, Stefano & Scaparra, Maria Paola, 2016. "Optimizing dynamic investment decisions for railway systems protection," European Journal of Operational Research, Elsevier, vol. 248(2), pages 543-557.
    18. Gedik, Ridvan & Medal, Hugh & Rainwater, Chase & Pohl, Ed A. & Mason, Scott J., 2014. "Vulnerability assessment and re-routing of freight trains under disruptions: A coal supply chain network application," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 71(C), pages 45-57.
    19. Pengfei Zhang & Neng Fan, 2017. "Analysis of budget for interdiction on multicommodity network flows," Journal of Global Optimization, Springer, vol. 67(3), pages 495-525, March.
    20. Utsav Sadana & Erick Delage, 2023. "The Value of Randomized Strategies in Distributionally Robust Risk-Averse Network Interdiction Problems," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 216-232, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:21:y:2021:i:2:d:10.1007_s12351-019-00472-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.