IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v21y2021i1d10.1007_s12351-018-0439-5.html
   My bibliography  Save this article

Optimal production run time for an imperfect production inventory system with rework, random breakdowns and inspection costs

Author

Listed:
  • Harun Öztürk

    (Suleyman Demirel University)

Abstract

In real-life manufacturing systems, the presence of defective products in a lot is inevitable. While these products may be just scrapped in the food industry, in high-tech industries where the final product is very expensive, they may be reworked at a cost. A common assumption in the literature is that the inspection time needed to identify defective items is completed when the production process ends. However, the assumption of continuous inspection during production complicates the analysis, making it impractical for most production systems, especially when the production rate is high, and the proportion of defective items is low, making continuous inspection during production very expensive. In addition, such factors as process deterioration or other uncontrollable factors in the production process may interrupt the production of the lot. To address these practical issues, this paper integrates inspection time and the failure of production facilities into an imperfect production inventory model with rework, where the production run time is a decision variable and an inspection process continues even after a production run; the paper demonstrates significant effects on the optimal solutions, with shortages not allowed. Under these assumptions, a mathematical model is derived, and the concavity of the expected total profit function is proved. Optimal policy is obtained by applying the analytic method. Special cases of the model are studied and a numerical example with sensitivity analysis is provided to draw insights. Moreover, this numerical example is used to compare general and special cases.

Suggested Citation

  • Harun Öztürk, 2021. "Optimal production run time for an imperfect production inventory system with rework, random breakdowns and inspection costs," Operational Research, Springer, vol. 21(1), pages 167-204, March.
  • Handle: RePEc:spr:operea:v:21:y:2021:i:1:d:10.1007_s12351-018-0439-5
    DOI: 10.1007/s12351-018-0439-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-018-0439-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-018-0439-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. T. Bielecki & P. R. Kumar, 1988. "Optimality of Zero-Inventory Policies for Unreliable Manufacturing Systems," Operations Research, INFORMS, vol. 36(4), pages 532-541, August.
    2. Flapper, Simme Douwe P. & Teunter, Ruud H., 2004. "Logistic planning of rework with deteriorating work-in-process," International Journal of Production Economics, Elsevier, vol. 88(1), pages 51-59, March.
    3. Hau L. Lee & Meir J. Rosenblatt, 1987. "Simultaneous Determination of Production Cycle and Inspection Schedules in a Production System," Management Science, INFORMS, vol. 33(9), pages 1125-1136, September.
    4. M. Berg & M. J. M. Posner & H. Zhao, 1994. "Production-Inventory Systems with Unreliable Machines," Operations Research, INFORMS, vol. 42(1), pages 111-118, February.
    5. Liu, John J. & Yang, Ping, 1996. "Optimal lot-sizing in an imperfect production system with homogeneous reworkable jobs," European Journal of Operational Research, Elsevier, vol. 91(3), pages 517-527, June.
    6. Wee, Hui Ming & Widyadana, Gede Agus, 2013. "A production model for deteriorating items with stochastic preventive maintenance time and rework process with FIFO rule," Omega, Elsevier, vol. 41(6), pages 941-954.
    7. Harry Groenevelt & Liliane Pintelon & Abraham Seidmann, 1992. "Production Lot Sizing with Machine Breakdowns," Management Science, INFORMS, vol. 38(1), pages 104-123, January.
    8. Chiu, Singa Wang & Wang, Shan-Ling & Chiu, Yuan-Shyi Peter, 2007. "Determining the optimal run time for EPQ model with scrap, rework, and stochastic breakdowns," European Journal of Operational Research, Elsevier, vol. 180(2), pages 664-676, July.
    9. Yoo, Seung Ho & Kim, DaeSoo & Park, Myung-Sub, 2009. "Economic production quantity model with imperfect-quality items, two-way imperfect inspection and sales return," International Journal of Production Economics, Elsevier, vol. 121(1), pages 255-265, September.
    10. Gede Agus Widyadana & Hui Ming Wee, 2012. "An economic production quantity model for deteriorating items with preventive maintenance policy and random machine breakdown," International Journal of Systems Science, Taylor & Francis Journals, vol. 43(10), pages 1870-1882.
    11. Taleizadeh, Ata Allah & Cárdenas-Barrón, Leopoldo Eduardo & Mohammadi, Babak, 2014. "A deterministic multi product single machine EPQ model with backordering, scraped products, rework and interruption in manufacturing process," International Journal of Production Economics, Elsevier, vol. 150(C), pages 9-27.
    12. Chiu, Singa Wang & Chou, Chung-Li & Wu, Wen-Kuei, 2013. "Optimizing replenishment policy in an EPQ-based inventory model with nonconforming items and breakdown," Economic Modelling, Elsevier, vol. 35(C), pages 330-337.
    13. Khan, M. & Jaber, M.Y. & Guiffrida, A.L. & Zolfaghari, S., 2011. "A review of the extensions of a modified EOQ model for imperfect quality items," International Journal of Production Economics, Elsevier, vol. 132(1), pages 1-12, July.
    14. Gwo-Liang Liao, 2016. "Optimal economic production quantity policy for a parallel system with repair, rework, free-repair warranty and maintenance," International Journal of Production Research, Taylor & Francis Journals, vol. 54(20), pages 6265-6280, October.
    15. Glock, C. H., 2013. "The machine breakdown paradox: How random shifts in the production rate may increase company profits," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 62254, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    16. Salameh, M. K. & Jaber, M. Y., 2000. "Economic production quantity model for items with imperfect quality," International Journal of Production Economics, Elsevier, vol. 64(1-3), pages 59-64, March.
    17. Chakraborty, Tulika & Giri, B.C. & Chaudhuri, K.S., 2008. "Production lot sizing with process deterioration and machine breakdown," European Journal of Operational Research, Elsevier, vol. 185(2), pages 606-618, March.
    18. Kamran Moinzadeh & Prabhu Aggarwal, 1997. "Analysis of a Production/Inventory System Subject to Random Disruptions," Management Science, INFORMS, vol. 43(11), pages 1577-1588, November.
    19. Evan L. Porteus, 1986. "Optimal Lot Sizing, Process Quality Improvement and Setup Cost Reduction," Operations Research, INFORMS, vol. 34(1), pages 137-144, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Prasanta Kumar Ghosh & Amalesh Kumar Manna & Jayanta Kumar Dey & Samarjit Kar, 2023. "Optimal production run in an imperfect production process with maintenance under warranty and product insurance," OPSEARCH, Springer;Operational Research Society of India, vol. 60(2), pages 720-752, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harun Öztürk, 2019. "Modeling an inventory problem with random supply, inspection and machine breakdown," OPSEARCH, Springer;Operational Research Society of India, vol. 56(2), pages 497-527, June.
    2. Om Prakash & A.R. Roy & A. Goswami, 2014. "Stochastic manufacturing system with process deterioration and machine breakdown," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(12), pages 2539-2551, December.
    3. Bouslah, Bassem & Gharbi, Ali & Pellerin, Robert, 2013. "Joint optimal lot sizing and production control policy in an unreliable and imperfect manufacturing system," International Journal of Production Economics, Elsevier, vol. 144(1), pages 143-156.
    4. K.Y. Kung & Y.D. Huang & H.M. Wee & Y. Daryanto, 2019. "Production-Inventory System for Deteriorating Items with Machine Breakdown, Inspection, and Partial Backordering," Mathematics, MDPI, vol. 7(7), pages 1-26, July.
    5. Ata Allah Taleizadeh, 2018. "A constrained integrated imperfect manufacturing-inventory system with preventive maintenance and partial backordering," Annals of Operations Research, Springer, vol. 261(1), pages 303-337, February.
    6. Peymankar, Mahboobe & Dehghanian, Farzad & Ghiami, Yousef & Abolbashari, Mohammad Hassan, 2018. "The effects of contractual agreements on the economic production quantity model with machine breakdown," International Journal of Production Economics, Elsevier, vol. 201(C), pages 203-215.
    7. Hsu, Jia-Tzer & Hsu, Lie-Fern, 2013. "An EOQ model with imperfect quality items, inspection errors, shortage backordering, and sales returns," International Journal of Production Economics, Elsevier, vol. 143(1), pages 162-170.
    8. Taleizadeh, Ata Allah & Cárdenas-Barrón, Leopoldo Eduardo & Mohammadi, Babak, 2014. "A deterministic multi product single machine EPQ model with backordering, scraped products, rework and interruption in manufacturing process," International Journal of Production Economics, Elsevier, vol. 150(C), pages 9-27.
    9. Yoo, Seung Ho & Kim, DaeSoo & Park, Myung-Sub, 2012. "Lot sizing and quality investment with quality cost analyses for imperfect production and inspection processes with commercial return," International Journal of Production Economics, Elsevier, vol. 140(2), pages 922-933.
    10. B C Giri & T Dohi, 2005. "Exact formulation of stochastic EMQ model for an unreliable production system," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(5), pages 563-575, May.
    11. Chakraborty, Tulika & Giri, B.C. & Chaudhuri, K.S., 2008. "Production lot sizing with process deterioration and machine breakdown," European Journal of Operational Research, Elsevier, vol. 185(2), pages 606-618, March.
    12. Chiu, Singa Wang & Liang, Gang-Ming & Chiu, Yuan-Shyi Peter & Chiu, Tiffany, 2019. "Production planning incorporating issues of reliability and backlogging with service level constraint," Operations Research Perspectives, Elsevier, vol. 6(C).
    13. Hauck, Zsuzsanna & Vörös, József, 2015. "Lot sizing in case of defective items with investments to increase the speed of quality control," Omega, Elsevier, vol. 52(C), pages 180-189.
    14. Prasanta Kumar Ghosh & Amalesh Kumar Manna & Jayanta Kumar Dey & Samarjit Kar, 2023. "Optimal production run in an imperfect production process with maintenance under warranty and product insurance," OPSEARCH, Springer;Operational Research Society of India, vol. 60(2), pages 720-752, June.
    15. Chiu, Yuan-Shyi Peter & Chang, Huei-Hsin, 2014. "Optimal run time for EPQ model with scrap, rework and stochastic breakdowns: A note," Economic Modelling, Elsevier, vol. 37(C), pages 143-148.
    16. Kazaz, Burak & Sloan, Thomas W., 2013. "The impact of process deterioration on production and maintenance policies," European Journal of Operational Research, Elsevier, vol. 227(1), pages 88-100.
    17. Widyadana, Gede Agus & Wee, Hui Ming, 2012. "An economic production quantity model for deteriorating items with multiple production setups and rework," International Journal of Production Economics, Elsevier, vol. 138(1), pages 62-67.
    18. Ouyang, Liang-Yuh & Chang, Chun-Tao, 2013. "Optimal production lot with imperfect production process under permissible delay in payments and complete backlogging," International Journal of Production Economics, Elsevier, vol. 144(2), pages 610-617.
    19. Lee, Sunghee & Kim, Daeki, 2014. "An optimal policy for a single-vendor single-buyer integrated production–distribution model with both deteriorating and defective items," International Journal of Production Economics, Elsevier, vol. 147(PA), pages 161-170.
    20. Chayanika Rout & Ravi Shankar Kumar & Debjani Chakraborty & Adrijit Goswami, 2019. "An EPQ model for deteriorating items with imperfect production, inspection errors, rework and shortages : a type-2 fuzzy approach," OPSEARCH, Springer;Operational Research Society of India, vol. 56(3), pages 657-688, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:21:y:2021:i:1:d:10.1007_s12351-018-0439-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.