IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v93y2018i3d10.1007_s11069-018-3346-4.html
   My bibliography  Save this article

Risk assessment of the areas along the highway due to hazardous material transportation accidents

Author

Listed:
  • Xifei Huang

    (China University of Geosciences (Beijing))

  • Xinhao Wang

    (China University of Geosciences (Beijing))

  • Jingjing Pei

    (China University of Geosciences (Beijing))

  • Ming Xu

    (China University of Geosciences (Beijing))

  • Xiaowu Huang

    (Shenzhen Green Century Environmental Technology Co., Ltd.)

  • Yun Luo

    (China University of Geosciences (Beijing))

Abstract

As the industrialization process accelerates in developing countries, road accidents involving hazardous materials are increasing, and the threat associated with these accidents to areas along the highway cannot be ignored. The main objective of this paper is to contribute information regarding risk quantification, risk prevention, and control by government managers in areas along the highways. Thus, the risk assessment of the area along the highway (RAAH) method was established and applied as a regional risk prevention policy. Considering that the damage caused by accidents can vary substantially between different surroundings, the RAAH method was used as an integrated function comprising of accident frequency, intensity and vulnerability along the route, and the vulnerability system reflected the characteristics of the social and environmental factors in the study area. Then, in this study, we implemented this assessment model in geographic information system and applied it to a typical section of the Beijing–Tibet Highway in Beijing, China, to demonstrate its functionality and utility. A risk map was successfully obtained, and it showed that this method not only effectively reveals the neglected high-risk units but also can be used to provide technical support to the regional government to identify the blind spots and strengthen their risk management.

Suggested Citation

  • Xifei Huang & Xinhao Wang & Jingjing Pei & Ming Xu & Xiaowu Huang & Yun Luo, 2018. "Risk assessment of the areas along the highway due to hazardous material transportation accidents," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(3), pages 1181-1202, September.
  • Handle: RePEc:spr:nathaz:v:93:y:2018:i:3:d:10.1007_s11069-018-3346-4
    DOI: 10.1007/s11069-018-3346-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-018-3346-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-018-3346-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yongdeng Lei & Jing’ai Wang & Yaojie Yue & Hongjian Zhou & Weixia Yin, 2014. "Rethinking the relationships of vulnerability, resilience, and adaptation from a disaster risk perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 609-627, January.
    2. Mohammadi, Mehrdad & Jula, Payman & Tavakkoli-Moghaddam, Reza, 2017. "Design of a reliable multi-modal multi-commodity model for hazardous materials transportation under uncertainty," European Journal of Operational Research, Elsevier, vol. 257(3), pages 792-809.
    3. Zhao, Jun & Huang, Lixia & Lee, Der-Horng & Peng, Qiyuan, 2016. "Improved approaches to the network design problem in regional hazardous waste management systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 88(C), pages 52-75.
    4. Shahrzad Faghih-Roohi & Yew-Soon Ong & Sobhan Asian & Allan N. Zhang, 2016. "Dynamic conditional value-at-risk model for routing and scheduling of hazardous material transportation networks," Annals of Operations Research, Springer, vol. 247(2), pages 715-734, December.
    5. Ming Zhao & Qiuwen Chen, 2015. "Risk-based optimization of emergency rescue facilities locations for large-scale environmental accidents to improve urban public safety," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 163-189, January.
    6. Rongrong Li & Yee Leung, 2011. "Multi-objective route planning for dangerous goods using compromise programming," Journal of Geographical Systems, Springer, vol. 13(3), pages 249-271, September.
    7. Scenna, N.J. & Santa Cruz, A.S.M., 2005. "Road risk analysis due to the transportation of chlorine in Rosario city," Reliability Engineering and System Safety, Elsevier, vol. 90(1), pages 83-90.
    8. Ying Zhang & Yun Luo & Jingjing Pei & Yu Hao & Zhu Zeng & Yanpeng Yang, 2015. "The establishment of gas accident risk tolerability criteria based on F–N curve in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(1), pages 263-276, October.
    9. Yafei Zhou & Mao Liu, 2012. "Risk Assessment of Major Hazards and its Application in Urban Planning: A Case Study," Risk Analysis, John Wiley & Sons, vol. 32(3), pages 566-577, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weihua Zhang & Wuyi Cheng & Wenmei Gai, 2022. "Hazardous Chemicals Road Transportation Accidents and the Corresponding Evacuation Events from 2012 to 2020 in China: A Review," IJERPH, MDPI, vol. 19(22), pages 1-31, November.
    2. Sheng Dong & Jibiao Zhou & Changxi Ma, 2020. "Design of a Network Optimization Platform for the Multivehicle Transportation of Hazardous Materials," IJERPH, MDPI, vol. 17(3), pages 1-14, February.
    3. Guo, Jian & Luo, Cheng & Ma, Kaijiang, 2023. "Risk coupling analysis of road transportation accidents of hazardous materials in complicated maritime environment," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    4. Shengxue Zhu & Shiwen Zhang & Hong Lang & Chenming Jiang & Yingying Xing, 2022. "The Situation of Hazardous Materials Accidents during Road Transportation in China from 2013 to 2019," IJERPH, MDPI, vol. 19(15), pages 1-15, August.
    5. Liping Liu & Qing Wu & Shuxia Li & Ying Li & Tijun Fan, 2021. "Risk Assessment of Hazmat Road Transportation Considering Environmental Risk under Time-Varying Conditions," IJERPH, MDPI, vol. 18(18), pages 1-19, September.
    6. Tao, Longlong & Wu, Jie & Ge, Daochuan & Chen, Liwei & Sun, Ming, 2022. "Risk-informed based comprehensive path-planning method for radioactive materials road transportation," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    7. Shuxia Li & Yuedan Zu & Huimin Fang & Liping Liu & Tijun Fan, 2021. "Design Optimization of a HAZMAT Multimodal Hub-and-Spoke Network with Detour," IJERPH, MDPI, vol. 18(23), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohri, Seyed Sina & Mohammadi, Mehrdad & Gendreau, Michel & Pirayesh, Amir & Ghasemaghaei, Ali & Salehi, Vahid, 2022. "Hazardous material transportation problems: A comprehensive overview of models and solution approaches," European Journal of Operational Research, Elsevier, vol. 302(1), pages 1-38.
    2. Cunrui Ma & Baohua Mao & Qi Xu & Guodong Hua & Sijia Zhang & Tong Zhang, 2018. "Multi-Depot Vehicle Routing Optimization Considering Energy Consumption for Hazardous Materials Transportation," Sustainability, MDPI, vol. 10(10), pages 1-21, September.
    3. Yan Sun & Xinya Li & Xia Liang & Cevin Zhang, 2019. "A Bi-Objective Fuzzy Credibilistic Chance-Constrained Programming Approach for the Hazardous Materials Road-Rail Multimodal Routing Problem under Uncertainty and Sustainability," Sustainability, MDPI, vol. 11(9), pages 1-27, May.
    4. Mohri, Seyed Sina & Asgari, Nasrin & Zanjirani Farahani, Reza & Bourlakis, Michael & Laker, Benjamin, 2020. "Fairness in hazmat routing-scheduling: A bi-objective Stackelberg game," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    5. Ana Raquel Nunes, 2021. "Exploring the interactions between vulnerability, resilience and adaptation to extreme temperatures," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(3), pages 2261-2293, December.
    6. Cheng-Hsien Hsieh, 2014. "Disaster risk assessment of ports based on the perspective of vulnerability," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 851-864, November.
    7. Yan Sun & Maoxiang Lang & Danzhu Wang, 2016. "Bi-Objective Modelling for Hazardous Materials Road–Rail Multimodal Routing Problem with Railway Schedule-Based Space–Time Constraints," IJERPH, MDPI, vol. 13(8), pages 1-31, July.
    8. Sadeghi, Mohammad & Yaghoubi, Saeed, 2024. "Optimization models for cloud seeding network design and operations," European Journal of Operational Research, Elsevier, vol. 312(3), pages 1146-1167.
    9. Izdebski, Mariusz & Jacyna-Gołda, Ilona & Gołda, Paweł, 2022. "Minimisation of the probability of serious road accidents in the transport of dangerous goods," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    10. Xin, Li & Xi, Chen & Sagir, Mujgan & Wenbo, Zhang, 2023. "How can infectious medical waste be forecasted and transported during the COVID-19 pandemic? A hybrid two-stage method," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    11. Xue Yang & Shili Guo & Xin Deng & Dingde Xu, 2021. "Livelihood Adaptation of Rural Households under Livelihood Stress: Evidence from Sichuan Province, China," Agriculture, MDPI, vol. 11(6), pages 1-19, May.
    12. Chen Wei & Sobhan Asian & Gurdal Ertek & Zhi-Hua Hu, 2020. "Location-based pricing and channel selection in a supply chain: a case study from the food retail industry," Annals of Operations Research, Springer, vol. 291(1), pages 959-984, August.
    13. Shimin Zhu & Yanqiong Zhuang & Patrick Ip, 2021. "Impacts on Children and Adolescents’ Lifestyle, Social Support and Their Association with Negative Impacts of the COVID-19 Pandemic," IJERPH, MDPI, vol. 18(9), pages 1-17, April.
    14. Digby Race & Supriya Mathew & Matthew Campbell & Karl Hampton, 2016. "Understanding climate adaptation investments for communities living in desert Australia: experiences of indigenous communities," Climatic Change, Springer, vol. 139(3), pages 461-475, December.
    15. Feng, Jianghong & Xu, Su Xiu & Xu, Gangyan & Cheng, Huibing, 2022. "An integrated decision-making method for locating parking centers of recyclable waste transportation vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    16. Jun Zhao & Lixiang Huang, 2019. "Multi-Period Network Design Problem in Regional Hazardous Waste Management Systems," IJERPH, MDPI, vol. 16(11), pages 1-27, June.
    17. Karimi-Mamaghan, Maryam & Mohammadi, Mehrdad & Jula, Payman & Pirayesh, Amir & Ahmadi, Hadi, 2020. "A learning-based metaheuristic for a multi-objective agile inspection planning model under uncertainty," European Journal of Operational Research, Elsevier, vol. 285(2), pages 513-537.
    18. Hongjian Zhou & Xi Wang & Jing’ai Wang, 2016. "A Way to Sustainability: Perspective of Resilience and Adaptation to Disaster," Sustainability, MDPI, vol. 8(8), pages 1-14, August.
    19. Wu, Weitiao & Ma, Jian & Liu, Ronghui & Jin, Wenzhou, 2022. "Multi-class hazmat distribution network design with inventory and superimposed risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    20. Zajac, Sandra & Huber, Sandra, 2021. "Objectives and methods in multi-objective routing problems: a survey and classification scheme," European Journal of Operational Research, Elsevier, vol. 290(1), pages 1-25.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:93:y:2018:i:3:d:10.1007_s11069-018-3346-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.