IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v87y2017i2d10.1007_s11069-017-2806-6.html
   My bibliography  Save this article

Spatiotemporal analysis of residential flood exposure in the Atlanta, Georgia metropolitan area

Author

Listed:
  • Alex P. Ferguson

    (National Weather Service Sioux Falls Weather Forecast Office)

  • Walker S. Ashley

    (Northern Illinois University)

Abstract

This research examines changes in residential built-environment flood exposure within the current boundaries of the Atlanta, Georgia metropolitan statistical area, by estimating the number of housing units that are located within the floodplains of the region. Housing unit data at the block level from the 1990 to 2010 decennial censuses are used to estimate housing unit exposure to floods using a binary dasymetric and proportional allocation method. Three different representations of the 100-year (1 percent annual chance) and 500-year (0.2 percent annual chance) floodplain are employed: the generally more conservative floodplains created using the Federal Emergency Management Agency’s Hazus-MH software, the generally more extensive floodplains included in the proprietary Flood Hazard Data product from KatRisk LLC and the regulatory floodplains from the National Flood Insurance Program. The number of housing units within both the 100- and 500-year floodplain increased from 1990 to 2010 throughout the Atlanta region. Housing unit growth within the regulatory 100-year flood zone was slower than growth elsewhere, suggesting that the National Flood Insurance Program may have been marginally effective overall. Results using the KatRisk product reveal both greater overall and a greater increase in housing units at risk within the 100-year floodplain than the regulatory product suggests. The results argue that heightened flood exposure, particularly in areas experiencing new development, is an important factor to consider when addressing the impact of the flood hazard over time.

Suggested Citation

  • Alex P. Ferguson & Walker S. Ashley, 2017. "Spatiotemporal analysis of residential flood exposure in the Atlanta, Georgia metropolitan area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(2), pages 989-1016, June.
  • Handle: RePEc:spr:nathaz:v:87:y:2017:i:2:d:10.1007_s11069-017-2806-6
    DOI: 10.1007/s11069-017-2806-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-017-2806-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-017-2806-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Seung-Ki Min & Xuebin Zhang & Francis W. Zwiers & Gabriele C. Hegerl, 2011. "Human contribution to more-intense precipitation extremes," Nature, Nature, vol. 470(7334), pages 378-381, February.
    2. Marius Paulikas & Walker Ashley, 2011. "Thunderstorm Hazard vulnerability for the Atlanta, Georgia metropolitan region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(3), pages 1077-1092, September.
    3. Walker Ashley & Mace Bentley & J. Stallins, 2012. "Urban-induced thunderstorm modification in the Southeast United States," Climatic Change, Springer, vol. 113(2), pages 481-498, July.
    4. Alexander Fekete, 2012. "Spatial disaster vulnerability and risk assessments: challenges in their quality and acceptance," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(3), pages 1161-1178, April.
    5. Melanie Gall & Kevin A. Borden & Christopher T. Emrich & Susan L. Cutter, 2011. "The Unsustainable Trend of Natural Hazard Losses in the United States," Sustainability, MDPI, vol. 3(11), pages 1-25, November.
    6. Troy Rosencrants & Walker Ashley, 2015. "Spatiotemporal analysis of tornado exposure in five US metropolitan areas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 121-140, August.
    7. Stephen Strader & Walker Ashley & James Walker, 2015. "Changes in volcanic hazard exposure in the Northwest USA from 1940 to 2100," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 1365-1392, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lomborg, Bjorn, 2020. "Welfare in the 21st century: Increasing development, reducing inequality, the impact of climate change, and the cost of climate policies," Technological Forecasting and Social Change, Elsevier, vol. 156(C).
    2. Stephen M. Strader, 2018. "Spatiotemporal changes in conterminous US wildfire exposure from 1940 to 2010," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 543-565, May.
    3. Caroline J. Williams & Rachel A. Davidson & Linda K. Nozick & Meghan Millea & Jamie L. Kruse & Joseph E. Trainor, 2023. "Single-family housing inventory projection method for natural hazard risk modeling applications," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(1), pages 409-434, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stephen M. Strader, 2018. "Spatiotemporal changes in conterminous US wildfire exposure from 1940 to 2010," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 543-565, May.
    2. Shiyao Zhu & Haibo Feng & Qiuhu Shao, 2023. "Evaluating Urban Flood Resilience within the Social-Economic-Natural Complex Ecosystem: A Case Study of Cities in the Yangtze River Delta," Land, MDPI, vol. 12(6), pages 1-22, June.
    3. Young Seok Song & Moo Jong Park, 2018. "A Study on Estimation Equation for Damage and Recovery Costs Considering Human Losses Focused on Natural Disasters in the Republic of Korea," Sustainability, MDPI, vol. 10(9), pages 1-16, August.
    4. Eric Tate & Aaron Strong & Travis Kraus & Haoyi Xiong, 2016. "Flood recovery and property acquisition in Cedar Rapids, Iowa," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 2055-2079, February.
    5. Eric Tate & Aaron Strong & Travis Kraus & Haoyi Xiong, 2016. "Flood recovery and property acquisition in Cedar Rapids, Iowa," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 2055-2079, February.
    6. Davor Kvočka & Roger A. Falconer & Michaela Bray, 2016. "Flood hazard assessment for extreme flood events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1569-1599, December.
    7. Ashley C. Freeman & Walker S. Ashley, 2017. "Changes in the US hurricane disaster landscape: the relationship between risk and exposure," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 659-682, September.
    8. Ikefuji, Masako & Horii, Ryo, 2012. "Natural disasters in a two-sector model of endogenous growth," Journal of Public Economics, Elsevier, vol. 96(9-10), pages 784-796.
    9. Rei Itsukushima & Yohei Ogahara & Yuki Iwanaga & Tatsuro Sato, 2018. "Investigating the Influence of Various Stormwater Runoff Control Facilities on Runoff Control Efficiency in a Small Catchment Area," Sustainability, MDPI, vol. 10(2), pages 1-12, February.
    10. Yaolong Liu & Guorui Feng & Ye Xue & Huaming Zhang & Ruoguang Wang, 2015. "Small-scale natural disaster risk scenario analysis: a case study from the town of Shuitou, Pingyang County, Wenzhou, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2167-2183, February.
    11. Islam, Moinul & Kotani, Koji & Managi, Shunsuke, 2016. "Climate perception and flood mitigation cooperation: A Bangladesh case study," Economic Analysis and Policy, Elsevier, vol. 49(C), pages 117-133.
    12. Kaustubh Salvi & Subimal Ghosh, 2016. "Projections of Extreme Dry and Wet Spells in the 21st Century India Using Stationary and Non-stationary Standardized Precipitation Indices," Climatic Change, Springer, vol. 139(3), pages 667-681, December.
    13. Itziar Modrego-Monforte & Mikel Barrena-Herrán & Olatz Grijalba, 2023. "A Multi-Criteria Analysis GIS Tool for Measuring the Vulnerability of the Residential Stock Based on Multidimensional Indices," Land, MDPI, vol. 12(8), pages 1-16, August.
    14. Jascha Lehmann & Dim Coumou & Katja Frieler, 2015. "Increased record-breaking precipitation events under global warming," Climatic Change, Springer, vol. 132(4), pages 501-515, October.
    15. Fabian Barthel & Eric Neumayer, 2012. "A trend analysis of normalized insured damage from natural disasters," Climatic Change, Springer, vol. 113(2), pages 215-237, July.
    16. Patrick Willems, 2013. "Multidecadal oscillatory behaviour of rainfall extremes in Europe," Climatic Change, Springer, vol. 120(4), pages 931-944, October.
    17. Brennan, Timothy J., 2011. "Energy Efficiency Policy: Surveying the Puzzles," RFF Working Paper Series dp-11-27, Resources for the Future.
    18. Joan Pauline Talubo & Roy Alvin Malenab & Stephen Morse & Devendra Saroj, 2022. "Practitioners’ Participatory Development of Indicators for Island Community Resilience to Disasters," Sustainability, MDPI, vol. 14(7), pages 1-28, March.
    19. Young Seok Song & Moo Jong Park & Jung Ho Lee & Byung Sik Kim & Yang Ho Song, 2020. "Improvement Measure of Integrated Disaster Management System Considering Disaster Damage Characteristics: Focusing on the Republic of Korea," Sustainability, MDPI, vol. 12(1), pages 1-18, January.
    20. -, 2018. "Climate Change in Central America: Potential Impacts and Public Policy Options," Sede Subregional de la CEPAL en México (Estudios e Investigaciones) 39150, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:87:y:2017:i:2:d:10.1007_s11069-017-2806-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.