IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i1p340-d303948.html
   My bibliography  Save this article

Improvement Measure of Integrated Disaster Management System Considering Disaster Damage Characteristics: Focusing on the Republic of Korea

Author

Listed:
  • Young Seok Song

    (Department of Civil Engineering and Landscape Architectural, Daegu Technical University, Daegu 42734, Korea)

  • Moo Jong Park

    (Department of Aeronautics and Civil Engineering, Hanseo University, Seosan 31962, Korea)

  • Jung Ho Lee

    (Department of Civil and Environmental Engineering, Hanbat National University, Daejeon 34158, Korea)

  • Byung Sik Kim

    (Department of Urban Environment & Disaster Management, School of Disaster Prevention, Kangwon National University, Kangwon 25913, Korea)

  • Yang Ho Song

    (Department of Civil and Environmental Engineering, Hanbat National University, Daejeon 34158, Korea)

Abstract

Recently, the Republic of Korea has experienced natural disasters, such as typhoons and heavy rainfall, as well as social accidents, such as large-scale accidents and infectious diseases, which are continuously occurring. Despite repeated disasters, problems such as inefficient early response and overlapping command systems occur continuously. In this study, we analyzed the characteristics of disaster management systems by foreign countries, and the status of the damages by disasters for the past 10 years in the Republic of Korea, to suggest possible measures to improve the Republic of Korea’s integrated disaster management system. When a disaster occurs in the Republic of Korea, the Si/Gun/Gu Disaster Safety Measure Headquarters, under the command of the local governments, become the responsible agencies for disaster response while the central government supervises and controls the overall disaster support and disaster management. To improve the current disaster management system, we propose to incorporate all disaster types rather than dividing them by type into natural disasters and social disasters. To improve the disaster response and disaster management system, we propose to restructure the current administrative organization, revise the disaster-related laws, and overcome problems, such as inter-ministerial interconnectivity and overlapping regulation.

Suggested Citation

  • Young Seok Song & Moo Jong Park & Jung Ho Lee & Byung Sik Kim & Yang Ho Song, 2020. "Improvement Measure of Integrated Disaster Management System Considering Disaster Damage Characteristics: Focusing on the Republic of Korea," Sustainability, MDPI, vol. 12(1), pages 1-18, January.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:1:p:340-:d:303948
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/1/340/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/1/340/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Young Seok Song & Moo Jong Park, 2019. "Development of Damage Prediction Formula for Natural Disasters Considering Economic Indicators," Sustainability, MDPI, vol. 11(3), pages 1-22, February.
    2. Angelika Wirtz & Wolfgang Kron & Petra Löw & Markus Steuer, 2014. "The need for data: natural disasters and the challenges of database management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 135-157, January.
    3. Melanie Gall & Kevin A. Borden & Christopher T. Emrich & Susan L. Cutter, 2011. "The Unsustainable Trend of Natural Hazard Losses in the United States," Sustainability, MDPI, vol. 3(11), pages 1-25, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matteo Coronese & Francesco Lamperti & Francesca Chiaromonte & Andrea Roventini, 2018. "Natural Disaster Risk and the Distributional Dynamics of Damages," LEM Papers Series 2018/22, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    2. Nicholas A Cradock-Henry & Joanna Fountain & Franca Buelow, 2018. "Transformations for Resilient Rural Futures: The Case of Kaikōura, Aotearoa-New Zealand," Sustainability, MDPI, vol. 10(6), pages 1-19, June.
    3. Christopher T. Emrich & Yao Zhou & Sanam K. Aksha & Herbert E. Longenecker, 2022. "Creating a Nationwide Composite Hazard Index Using Empirically Based Threat Assessment Approaches Applied to Open Geospatial Data," Sustainability, MDPI, vol. 14(5), pages 1-25, February.
    4. Richard S. J. Tol, 2022. "State capacity and vulnerability to natural disasters," Chapters, in: Mark Skidmore (ed.), Handbook on the Economics of Disasters, chapter 20, pages 434-457, Edward Elgar Publishing.
    5. Xavier Romão & Esmeralda Paupério, 2016. "A framework to assess quality and uncertainty in disaster loss data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 1077-1102, September.
    6. Xiang Zheng & Chuyao Feng & Mikio Ishiwatari, 2022. "Examining the Indirect Death Surveillance System of The Great East Japan Earthquake and Tsunami," IJERPH, MDPI, vol. 19(19), pages 1-15, September.
    7. Petra Tschakert & Jon Barnett & Neville Ellis & Carmen Lawrence & Nancy Tuana & Mark New & Carmen Elrick‐Barr & Ram Pandit & David Pannell, 2017. "Climate change and loss, as if people mattered: values, places, and experiences," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 8(5), September.
    8. Adam Smith & Richard Katz, 2013. "US billion-dollar weather and climate disasters: data sources, trends, accuracy and biases," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 387-410, June.
    9. Shiyao Zhu & Haibo Feng & Qiuhu Shao, 2023. "Evaluating Urban Flood Resilience within the Social-Economic-Natural Complex Ecosystem: A Case Study of Cities in the Yangtze River Delta," Land, MDPI, vol. 12(6), pages 1-22, June.
    10. Mieko Kumasaki & Malcolm King & Mitsuru Arai & Lili Yang, 2016. "Anatomy of cascading natural disasters in Japan: main modes and linkages," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1425-1441, February.
    11. Christoph Aubrecht & Patrick Meier & Hannes Taubenböck, 2017. "Speeding up the clock in remote sensing: identifying the ‘black spots’ in exposure dynamics by capitalizing on the full spectrum of joint high spatial and temporal resolution," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(1), pages 177-182, March.
    12. Vikrant Panwar & Subir Sen, 2020. "Disaster Damage Records of EM-DAT and DesInventar: A Systematic Comparison," Economics of Disasters and Climate Change, Springer, vol. 4(2), pages 295-317, July.
    13. Adam Smith & Jessica Matthews, 2015. "Quantifying uncertainty and variable sensitivity within the US billion-dollar weather and climate disaster cost estimates," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(3), pages 1829-1851, July.
    14. Marianna Rodrigues Gullo Cavalcante & Priscila Luz Barcellos & Marcio Cataldi, 2020. "Flash flood in the mountainous region of Rio de Janeiro state (Brazil) in 2011: part I—calibration watershed through hydrological SMAP model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 1117-1134, July.
    15. Eric Tate & Aaron Strong & Travis Kraus & Haoyi Xiong, 2016. "Flood recovery and property acquisition in Cedar Rapids, Iowa," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 2055-2079, February.
    16. Laura A. Bakkensen & Xiangying Shi & Brianna D. Zurita, 2018. "The Impact of Disaster Data on Estimating Damage Determinants and Climate Costs," Economics of Disasters and Climate Change, Springer, vol. 2(1), pages 49-71, April.
    17. Chad S. Boda & Turaj Faran & Murray Scown & Kelly Dorkenoo & Brian C. Chaffin & Maryam Nastar & Emily Boyd, 2021. "Loss and damage from climate change and implicit assumptions of sustainable development," Climatic Change, Springer, vol. 164(1), pages 1-18, January.
    18. Carolyn Kousky & Helen Wiley & Len Shabman, 2021. "Can Parametric Microinsurance Improve the Financial Resilience of Low-Income Households in the United States?," Economics of Disasters and Climate Change, Springer, vol. 5(3), pages 301-327, October.
    19. M. Amparo Núñez-Andrés & Nieves Lantada Zarzosa & José Martínez-Llario, 2022. "Spatial data infrastructure (SDI) for inventory rockfalls with fragmentation information," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2649-2672, July.
    20. Stafford, Kathryn & Danes, Sharon M. & Haynes, George W., 2013. "Long-term family firm survival and growth considering owning family adaptive capacity and federal disaster assistance receipt," Journal of Family Business Strategy, Elsevier, vol. 4(3), pages 188-200.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:1:p:340-:d:303948. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.