IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v74y2014i2p1191-1207.html
   My bibliography  Save this article

Quantitatively analyze the impact of land use/land cover change on annual runoff decrease

Author

Listed:
  • Jianzhu Li
  • Senming Tan
  • Fulong Chen
  • Ping Feng

Abstract

Annual runoff in Luanhe river basin was detected a downward trend and caused water crisis in Tianjin, China. To quantify the decreased runoff volume, Mann–Kendall test and Pettitt test were employed to check whether there existed significant trend and change points for annual rainfall and runoff time series in Panjiakou reservoir basin and 8 sub-watersheds. It was found that the annual runoff time series had a significant downward trend at 5 % confidence level, and the change point was at 1979 in Panjiakou reservoir watershed. Then double mass curve of annual rainfall and annual runoff was plotted, and two lines were fitted before and after 1979, respectively. Based on this method, the comprehensive effects of land use/land cover change on annual runoff were estimated. To further quantify the contributions of each main factor to annual runoff decrease, water stored in check dams and social water use in different periods were surveyed first. And then multi-linear regression was used to develop the relations between annual runoff and the driven factors. Water area decrease was identified to be the main factor contributing to annual runoff reduction. The results in this study can provide valuable information for water resources planners and policy makers. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Jianzhu Li & Senming Tan & Fulong Chen & Ping Feng, 2014. "Quantitatively analyze the impact of land use/land cover change on annual runoff decrease," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 1191-1207, November.
  • Handle: RePEc:spr:nathaz:v:74:y:2014:i:2:p:1191-1207
    DOI: 10.1007/s11069-014-1237-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-014-1237-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-014-1237-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bahram Saghafian & Hassan Farazjoo & Babak Bozorgy & Farhad Yazdandoost, 2008. "Flood Intensification due to Changes in Land Use," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(8), pages 1051-1067, August.
    2. Nicola Ranger & Stéphane Hallegatte & Sumana Bhattacharya & Murthy Bachu & Satya Priya & K. Dhore & Farhat Rafique & P. Mathur & Nicolas Naville & Fanny Henriet & Celine Herweijer & Sanjib Pohit & Jan, 2011. "An assessment of the potential impact of climate change on flood risk in Mumbai," Climatic Change, Springer, vol. 104(1), pages 139-167, January.
    3. Khan, A. R., 2001. "Searching evidence for climatic change: Analysis of hydro-meteorological time series in the Upper Indus Basin," IWMI Working Papers H028687, International Water Management Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianzhu Li & Shuhan Zhou & Rong Hu, 2016. "Hydrological Drought Class Transition Using SPI and SRI Time Series by Loglinear Regression," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 669-684, January.
    2. Yixuan Wang & Jianzhu Li & Ping Feng & Fulong Chen, 2015. "Effects of large-scale climate patterns and human activities on hydrological drought: a case study in the Luanhe River basin, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1687-1710, April.
    3. Shengqi Jian & Peiqing Xiao & Yan Tang & Peng Jiao, 2023. "Runoff–Sediment Simulation of Typical Small Watershed in Loess Plateau of China," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    4. Jianzhu Li & Guoqing Li & Shuhan Zhou & Fulong Chen, 2016. "Quantifying the Effects of Land Surface Change on Annual Runoff Considering Precipitation Variability by SWAT," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 1071-1084, February.
    5. Ying Li & Suiliang Huang, 2015. "Landscape Ecological Risk Responses to Land Use Change in the Luanhe River Basin, China," Sustainability, MDPI, vol. 7(12), pages 1-22, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shanshan Hu & Xiangjun Cheng & Demin Zhou & Hong Zhang, 2017. "GIS-based flood risk assessment in suburban areas: a case study of the Fangshan District, Beijing," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1525-1543, July.
    2. Aaron B. Gertz & James B. Davies & Samantha L. Black, 2019. "A CGE Framework for Modeling the Economics of Flooding and Recovery in a Major Urban Area," Risk Analysis, John Wiley & Sons, vol. 39(6), pages 1314-1341, June.
    3. Badri Bhakta Shrestha & Edangodage Duminda Pradeep Perera & Shun Kudo & Mamoru Miyamoto & Yusuke Yamazaki & Daisuke Kuribayashi & Hisaya Sawano & Takahiro Sayama & Jun Magome & Akira Hasegawa & Tomoki, 2019. "Assessing flood disaster impacts in agriculture under climate change in the river basins of Southeast Asia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(1), pages 157-192, May.
    4. Jie Liu & Zhenwu Shi & Dan Wang, 2016. "Measuring and mapping the flood vulnerability based on land-use patterns: a case study of Beijing, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1545-1565, September.
    5. Stéphane Hallegatte, 2014. "Modeling the Role of Inventories and Heterogeneity in the Assessment of the Economic Costs of Natural Disasters," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 152-167, January.
    6. Otto, Christian & Willner, Sven Norman & Wenz, Leonie & Frieler, Katja & Levermann, Anders, 2017. "Modeling loss-propagation in the global supply network: The dynamic agent-based model acclimate," OSF Preprints 7yyhd, Center for Open Science.
    7. Arna Nishita Nithila & Paromita Shome & Ishrat Islam, 2022. "Waterlogging induced loss and damage assessment of urban households in the monsoon period: a case study of Dhaka, Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1565-1597, February.
    8. Surminski, Swenja & Eldridge, Jillian, 2015. "Flood insurance in England: an assessment of the current and newly proposed insurance scheme in the context of rising flood risk," LSE Research Online Documents on Economics 66256, London School of Economics and Political Science, LSE Library.
    9. Hallegatte, Stephane, 2012. "Modeling the roles of heterogeneity, substitution, and inventories in the assessment of natural disaster economic costs," Policy Research Working Paper Series 6047, The World Bank.
    10. Lorenzo Carrera & Gabriele Standardi & Francesco Bosello & Jaroslav Mysiak, 2014. "Assessing Direct and Indirect Economic Impacts of a Flood Event Through the Integration of Spatial and Computable General Equilibrium Modelling," Working Papers 2014.82, Fondazione Eni Enrico Mattei.
    11. Raoof Mostafazadeh & Amir Sadoddin & Abdolreza Bahremand & Vahed Berdi Sheikh & Arash Zare Garizi, 2017. "Scenario analysis of flood control structures using a multi-criteria decision-making technique in Northeast Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1827-1846, July.
    12. Stéphane Hallegatte & Nicola Ranger & Olivier Mestre & Patrice Dumas & Jan Corfee-Morlot & Celine Herweijer & Robert Wood, 2011. "Assessing climate change impacts, sea level rise and storm surge risk in port cities: a case study on Copenhagen," Climatic Change, Springer, vol. 104(1), pages 113-137, January.
    13. Lin Dou & Mingbin Huang & Yang Hong, 2009. "Statistical Assessment of the Impact of Conservation Measures on Streamflow Responses in a Watershed of the Loess Plateau, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(10), pages 1935-1949, August.
    14. Stéphane Hallegatte, 2012. "An exploration of the link between development, economic growth, and natural risk," Post-Print hal-00802047, HAL.
    15. Han Lim & Kanokporn Boochabun & Alan Ziegler, 2012. "Modifiers and Amplifiers of High and low Flows on the Ping River in Northern Thailand (1921–2009): The Roles of Climatic Events and Anthropogenic Activity," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 4203-4224, November.
    16. Michalis Diakakis, 2011. "A method for flood hazard mapping based on basin morphometry: application in two catchments in Greece," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 56(3), pages 803-814, March.
    17. Samiksha S. V. & P. Vethamony & Prasad K. Bhaskaran & P. Pednekar & M. Jishad & R. Arthur James, 2019. "Attenuation of Wave Energy Due to Mangrove Vegetation off Mumbai, India," Energies, MDPI, vol. 12(22), pages 1-16, November.
    18. Swenja Surminski & Delioma Oramas-Dorta, 2013. "Do flood insurance schemes in developing countries provide incentives to reduce physical risks?," GRI Working Papers 119, Grantham Research Institute on Climate Change and the Environment.
    19. Stéphane Hallegatte & Jan Corfee-Morlot, 2011. "Understanding climate change impacts, vulnerability and adaptation at city scale: an introduction," Climatic Change, Springer, vol. 104(1), pages 1-12, January.
    20. Zhengtao Zhang & Ning Li & Hong Xu & Jieling Feng & Xi Chen & Chao Gao & Peng Zhang, 2019. "Allocating assistance after a catastrophe based on the dynamic assessment of indirect economic losses," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(1), pages 17-37, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:74:y:2014:i:2:p:1191-1207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.