IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v74y2014i1p143-153.html
   My bibliography  Save this article

Tidal influence on high frequency harbor oscillations in a narrow entrance bay

Author

Listed:
  • S. Monserrat
  • I. Fine
  • A. Amores
  • M. Marcos

Abstract

High frequency sea level oscillations at Wells Harbor (Maine, Northeastern US), with periods in the range of several tens of minutes, display a tidally modulated response. During low tides, these sea level oscillations reach amplitudes of 10–20 cm, while during high tides they are significantly smaller. Wells Harbor is located in a low lying area with a tidal range of about 2 m and is connected to the open ocean through a narrow channel. Thus, the extent and depth of the bay significantly vary over a tidal cycle. This changing geometry determines both the resonant periods and the amplification factor of the bay. Numerical results confirm the link between observed variability and these specific topographic features. Results imply that when exceptionally energetic long waves reach the Wells Harbor entrance (as in the case of a tsunami or meteotsunami) the expected response will be significantly stronger during low tide than during high tide. Although mean sea level would be lower in the former case, the currents inside the bay would be stronger and potentially more dangerous. This tidally modulated response could be extrapolated to other sites with similar topographic characteristics. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • S. Monserrat & I. Fine & A. Amores & M. Marcos, 2014. "Tidal influence on high frequency harbor oscillations in a narrow entrance bay," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(1), pages 143-153, October.
  • Handle: RePEc:spr:nathaz:v:74:y:2014:i:1:p:143-153
    DOI: 10.1007/s11069-014-1284-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-014-1284-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-014-1284-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cummins, Patrick F., 2013. "The extractable power from a split tidal channel: An equivalent circuit analysis," Renewable Energy, Elsevier, vol. 50(C), pages 395-401.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexander B. Rabinovich & Jadranka Šepić & Richard E. Thomson, 2021. "The meteorological tsunami of 1 November 2010 in the southern Strait of Georgia: a case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1503-1544, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Garcia-Oliva, Miriam & Djordjević, Slobodan & Tabor, Gavin R., 2017. "The influence of channel geometry on tidal energy extraction in estuaries," Renewable Energy, Elsevier, vol. 101(C), pages 514-525.
    2. Deng, Guizhong & Zhang, Zhaoru & Li, Ye & Liu, Hailong & Xu, Wentao & Pan, Yulin, 2020. "Prospective of development of large-scale tidal current turbine array: An example numerical investigation of Zhejiang, China," Applied Energy, Elsevier, vol. 264(C).
    3. Pérez-Ortiz, Alberto & Borthwick, Alistair G.L. & McNaughton, James & Smith, Helen C.M. & Xiao, Qing, 2017. "Resource characterization of sites in the vicinity of an island near a landmass," Renewable Energy, Elsevier, vol. 103(C), pages 265-276.
    4. Khan, N. & Kalair, A. & Abas, N. & Haider, A., 2017. "Review of ocean tidal, wave and thermal energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 590-604.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:74:y:2014:i:1:p:143-153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.