IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v68y2013i2p883-900.html
   My bibliography  Save this article

Application of an incomplete landslide inventory, logistic regression model and its validation for landslide susceptibility mapping related to the May 12, 2008 Wenchuan earthquake of China

Author

Listed:
  • Chong Xu
  • Xiwei Xu
  • Fuchu Dai
  • Zhide Wu
  • Honglin He
  • Feng Shi
  • Xiyan Wu
  • Suning Xu

Abstract

The main purpose of this paper is to present the use of multi-resource remote sensing data, an incomplete landslide inventory, GIS technique and logistic regression model for landslide susceptibility mapping related to the May 12, 2008 Wenchuan earthquake of China. Landslide location polygons were delineated from visual interpretation of aerial photographs, satellite images in high resolutions, and verified by selecting field investigations. Eight factors, including slope angle, slope aspect, elevation, distance from drainages, distance from roads, distance from main faults, seismic intensity and lithology were selected as controlling factors for earthquake-triggered landslide susceptibility mapping. Qualitative susceptibility analyses were carried out using the map overlaying techniques in GIS platform. The validation result showed a success rate of 82.751 % between the susceptibility probability index map and the location of the initial landslide inventory. The predictive rate of 86.930 % was obtained by comparing the additional landslide polygons and the landslide susceptibility probability index map. Both the success rate and the predictive rate show sufficient agreement between the landslide susceptibility map and the existing landslide data, and good predictive power for spatial prediction of the earthquake-triggered landslides. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • Chong Xu & Xiwei Xu & Fuchu Dai & Zhide Wu & Honglin He & Feng Shi & Xiyan Wu & Suning Xu, 2013. "Application of an incomplete landslide inventory, logistic regression model and its validation for landslide susceptibility mapping related to the May 12, 2008 Wenchuan earthquake of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 883-900, September.
  • Handle: RePEc:spr:nathaz:v:68:y:2013:i:2:p:883-900
    DOI: 10.1007/s11069-013-0661-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-013-0661-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-013-0661-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dieu Tien Bui & Biswajeet Pradhan & Owe Lofman & Inge Revhaug & Øystein Dick, 2013. "Regional prediction of landslide hazard using probability analysis of intense rainfall in the Hoa Binh province, Vietnam," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 707-730, March.
    2. Donatella Caniani & Stefania Pascale & Francesco Sdao & Aurelia Sole, 2008. "Neural networks and landslide susceptibility: a case study of the urban area of Potenza," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 45(1), pages 55-72, April.
    3. Vicki Moon & Hugh Blackstock, 2004. "A Methodology for Assessing Landslide Hazard Using Deterministic Stability Models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 32(1), pages 111-134, May.
    4. Jean Vaunat & Serge Leroueil, 2002. "Analysis of Post-Failure Slope Movements within the Framework of Hazard and Risk Analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 26(1), pages 81-107, May.
    5. Maria Kouli & Constantinos Loupasakis & Pantelis Soupios & Filippos Vallianatos, 2010. "Landslide hazard zonation in high risk areas of Rethymno Prefecture, Crete Island, Greece," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 52(3), pages 599-621, March.
    6. Adnan Özdemir & Mehmet Delikanli, 2009. "A geotechnical investigation of the retrogressive Yaka Landslide and the debris flow threatening the town of Yaka (Isparta, SW Turkey)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 49(1), pages 113-136, April.
    7. Mowen Xie & Tetsuro Esaki & Guoyun Zhou, 2004. "GIS-Based Probabilistic Mapping of Landslide Hazard Using a Three-Dimensional Deterministic Model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 33(2), pages 265-282, October.
    8. Yang Hong & Robert Adler & George Huffman, 2007. "Use of satellite remote sensing data in the mapping of global landslide susceptibility," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 43(2), pages 245-256, November.
    9. Ali Yalcin & Fikri Bulut, 2007. "Landslide susceptibility mapping using GIS and digital photogrammetric techniques: a case study from Ardesen (NE-Turkey)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 41(1), pages 201-226, April.
    10. C. van Westen & N. Rengers & R. Soeters, 2003. "Use of Geomorphological Information in Indirect Landslide Susceptibility Assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 30(3), pages 399-419, November.
    11. P. Lu & M. Rosenbaum, 2003. "Artificial Neural Networks and Grey Systems for the Prediction of Slope Stability," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 30(3), pages 383-398, November.
    12. Paolo Magliulo & Antonio Di Lisio & Filippo Russo & Antonio Zelano, 2008. "Geomorphology and landslide susceptibility assessment using GIS and bivariate statistics: a case study in southern Italy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 47(3), pages 411-435, December.
    13. L.P.H. Van Beek & Th.W.J Van Asch, 2004. "Regional Assessment of the Effects of Land-Use Change on Landslide Hazard By Means of Physically Based Modelling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 31(1), pages 289-304, January.
    14. E. Binaghi & M. Boschetti & P.A. Brivio & I. Gallo & F. Pergalani & A. Rampini, 2004. "Prediction of Displacements in Unstable Areas Using a Neural Model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 32(1), pages 135-154, May.
    15. Chang-Jo Chung & Andrea Fabbri, 2003. "Validation of Spatial Prediction Models for Landslide Hazard Mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 30(3), pages 451-472, November.
    16. J. Marquínez & R. Menéndez Duarte & P. Farias & M. JiméNez Sánchez, 2003. "Predictive GIS-Based Model of Rockfall Activity in Mountain Cliffs," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 30(3), pages 341-360, November.
    17. T. Gorum & B. Gonencgil & C. Gokceoglu & H. Nefeslioglu, 2008. "Implementation of reconstructed geomorphologic units in landslide susceptibility mapping: the Melen Gorge (NW Turkey)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 46(3), pages 323-351, September.
    18. L. Luzi & F. Pergalani, 1999. "Slope Instability in Static and Dynamic Conditions for Urban Planning: the ‘Oltre Po Pavese’ Case History (Regione Lombardia – Italy)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 20(1), pages 57-82, July.
    19. C. Irigaray & T. Fernández & J. Chacón, 2003. "Preliminary Rock-Slope-Susceptibility Assessment Using GIS and the SMR Classification," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 30(3), pages 309-324, November.
    20. C. Van Westen & A. Seijmonsbergen & F. Mantovani, 1999. "Comparing Landslide Hazard Maps," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 20(2), pages 137-158, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deliang Sun & Haijia Wen & Yalan Zhang & Mengmeng Xue, 2021. "An optimal sample selection-based logistic regression model of slope physical resistance against rainfall-induced landslide," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 1255-1279, January.
    2. Guru Balamurugan & Veerappan Ramesh & Mangminlen Touthang, 2016. "Landslide susceptibility zonation mapping using frequency ratio and fuzzy gamma operator models in part of NH-39, Manipur, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 465-488, October.
    3. Xin Wei & Lulu Zhang & Junyao Luo & Dongsheng Liu, 2021. "A hybrid framework integrating physical model and convolutional neural network for regional landslide susceptibility mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 471-497, October.
    4. Yashar Alimohammadlou & Burak F. Tanyu & Aiyoub Abbaspour & Paul L. Delamater, 2021. "Automated landslide detection model to delineate the extent of existing landslides," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1639-1656, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paraskevas Tsangaratos & Andreas Benardos, 2014. "Estimating landslide susceptibility through a artificial neural network classifier," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 1489-1516, December.
    2. G. Sakkas & I. Misailidis & N. Sakellariou & V. Kouskouna & G. Kaviris, 2016. "Modeling landslide susceptibility in Greece: a weighted linear combination approach using analytic hierarchical process, validated with spatial and statistical analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1873-1904, December.
    3. Krishna Devkota & Amar Regmi & Hamid Pourghasemi & Kohki Yoshida & Biswajeet Pradhan & In Ryu & Megh Dhital & Omar Althuwaynee, 2013. "Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 135-165, January.
    4. Kourosh Shirani & Mehrdad Pasandi & Alireza Arabameri, 2018. "Landslide susceptibility assessment by Dempster–Shafer and Index of Entropy models, Sarkhoun basin, Southwestern Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(3), pages 1379-1418, September.
    5. Paolo Magliulo & Antonio Di Lisio & Filippo Russo & Antonio Zelano, 2008. "Geomorphology and landslide susceptibility assessment using GIS and bivariate statistics: a case study in southern Italy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 47(3), pages 411-435, December.
    6. Anna Małka, 2021. "Landslide susceptibility mapping of Gdynia using geographic information system-based statistical models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 639-674, May.
    7. Rodeano Roslee & Alvyn Clancey Mickey & Norbert Simon & Mohd. Norazman Norhisham, 2017. "Landslide susceptibility analysis lsa using weighted overlay method wom along the genting sempah to bentong highway pahang," Malaysian Journal of Geosciences (MJG), Zibeline International Publishing, vol. 1(2), pages 13-19, September.
    8. Roşca Sanda & Bilaşco Ştefan & Petrea Dănuţ & Fodorean Ioan & Vescan Iuliu & Filip Sorin, 2015. "Application of landslide hazard scenarios at annual scale in the Niraj River basin (Transylvania Depression, Romania)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(3), pages 1573-1592, July.
    9. C. Abdallah & G. Faour, 2017. "Landslide hazard mapping of Ibrahim River Basin, Lebanon," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(1), pages 237-266, January.
    10. Massimo Conforti & Gaetano Robustelli & Francesco Muto & Salvatore Critelli, 2012. "Application and validation of bivariate GIS-based landslide susceptibility assessment for the Vitravo river catchment (Calabria, south Italy)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(1), pages 127-141, March.
    11. Ananta Pradhan & Yun-Tae Kim, 2014. "Relative effect method of landslide susceptibility zonation in weathered granite soil: a case study in Deokjeok-ri Creek, South Korea," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 1189-1217, June.
    12. Iuliana Armaş, 2012. "Weights of evidence method for landslide susceptibility mapping. Prahova Subcarpathians, Romania," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(3), pages 937-950, February.
    13. N. Sabatakakis & G. Koukis & E. Vassiliades & S. Lainas, 2013. "Landslide susceptibility zonation in Greece," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 523-543, January.
    14. Vahid Nourani & Biswajeet Pradhan & Hamid Ghaffari & Seyed Sharifi, 2014. "Landslide susceptibility mapping at Zonouz Plain, Iran using genetic programming and comparison with frequency ratio, logistic regression, and artificial neural network models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(1), pages 523-547, March.
    15. K. Sajinkumar & S. Anbazhagan, 2015. "Geomorphic appraisal of landslides on the windward slope of Western Ghats, southern India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 953-973, January.
    16. Paul Sestraș & Ștefan Bilașco & Sanda Roșca & Sanda Naș & Mircea V. Bondrea & Raluca Gâlgău & Ioel Vereș & Tudor Sălăgean & Velibor Spalević & Sorin M. Cîmpeanu, 2019. "Landslides Susceptibility Assessment Based on GIS Statistical Bivariate Analysis in the Hills Surrounding a Metropolitan Area," Sustainability, MDPI, vol. 11(5), pages 1-23, March.
    17. Khabat Khosravi & Ebrahim Nohani & Edris Maroufinia & Hamid Reza Pourghasemi, 2016. "A GIS-based flood susceptibility assessment and its mapping in Iran: a comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making techn," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 947-987, September.
    18. Shakti Suman & S. Z. Khan & S. K. Das & S. K. Chand, 2016. "Slope stability analysis using artificial intelligence techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 727-748, November.
    19. Gao Hua-xi & Yin Kun-long, 2014. "Study on spatial prediction and time forecast of landslide," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(3), pages 1735-1748, February.
    20. Fhatuwani Sengani & François Mulenga, 2020. "Application of Limit Equilibrium Analysis and Numerical Modeling in a Case of Slope Instability," Sustainability, MDPI, vol. 12(21), pages 1-33, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:68:y:2013:i:2:p:883-900. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.