IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v83y2016i2d10.1007_s11069-016-2357-2.html
   My bibliography  Save this article

A GIS-based flood susceptibility assessment and its mapping in Iran: a comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making technique

Author

Listed:
  • Khabat Khosravi

    (Sari Agricultural Sciences and Natural Resources University)

  • Ebrahim Nohani

    (Islamic Azad University)

  • Edris Maroufinia

    (Islamic Azad University)

  • Hamid Reza Pourghasemi

    (Shiraz University)

Abstract

Flood is one of the most prevalent natural disasters that frequently occur in the northern part of Iran reported in hot spots of flood occurrences. The main aim of the current study was to prepare flood susceptibility maps using four models, namely frequency ratio (FR), weights-of-evidence (WofE), analytical hierarchy process (AHP), and ensemble of frequency ratio with AHP (FR-AHP), and to compare them at Haraz Watershed in Mazandaran Province, Iran. A total of 211 flood locations were prepared in GIS environment, of which 151 locations were randomly selected for modeling and the remaining 60 locations were used for validation aims. In the next step, 10 flood-conditioning factors were prepared including slope angle, plan curvature, elevation, topographic wetness index, stream power index, rainfall, distance from river, geology, landuse, and normalized difference vegetation index. The receiver operating characteristic curve and the area under the curve (AUC) were created for different flood susceptibility maps. Validation of results showed that AUC values for success rate in training data set, for FR, WofE, AHP, and FR-AHP, were 97.07, 98.96, 95.91, and 86.19 % with prediction rates of 0.9657 (96.57 %), 0.9596 (95.96 %), 0.9492 (94.92 %), and 0.8469 (84.69 %), respectively. Moreover, the results showed that the frequency ratio model had the highest AUC in comparison with other models. Generally, the four models show a reasonable accuracy in flood-susceptible areas. The results of this study can be useful for managers, researchers, and planners to manage the susceptible areas to flood and reduce damages.

Suggested Citation

  • Khabat Khosravi & Ebrahim Nohani & Edris Maroufinia & Hamid Reza Pourghasemi, 2016. "A GIS-based flood susceptibility assessment and its mapping in Iran: a comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making techn," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 947-987, September.
  • Handle: RePEc:spr:nathaz:v:83:y:2016:i:2:d:10.1007_s11069-016-2357-2
    DOI: 10.1007/s11069-016-2357-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-016-2357-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-016-2357-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xin Huang & Hongzhuan Tan & Jia Zhou & Tubao Yang & Abuaku Benjamin & Shi Wen & Shuoqi Li & Aizhong Liu & Xinhua Li & Shuidong Fen & Xinli Li, 2008. "Flood hazard in Hunan province of China: an economic loss analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 47(1), pages 65-73, October.
    2. Nguyen Dang & Mukand Babel & Huynh Luong, 2011. "Evaluation of food risk parameters in the Day River Flood Diversion Area, Red River Delta, Vietnam," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 56(1), pages 169-194, January.
    3. Dieu Bui & Owe Lofman & Inge Revhaug & Oystein Dick, 2011. "Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1413-1444, December.
    4. C. van Westen & N. Rengers & R. Soeters, 2003. "Use of Geomorphological Information in Indirect Landslide Susceptibility Assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 30(3), pages 399-419, November.
    5. Dhruvesh Patel & Prashant Srivastava, 2013. "Flood Hazards Mitigation Analysis Using Remote Sensing and GIS: Correspondence with Town Planning Scheme," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2353-2368, May.
    6. Axel Bronstert, 2003. "Floods and Climate Change: Interactions and Impacts," Risk Analysis, John Wiley & Sons, vol. 23(3), pages 545-557, June.
    7. Sebastian Scheuer & Dagmar Haase & Volker Meyer, 2011. "Exploring multicriteria flood vulnerability by integrating economic, social and ecological dimensions of flood risk and coping capacity: from a starting point view towards an end point view of vulnera," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(2), pages 731-751, August.
    8. Dagoberto Alvarado-Aguilar & José Jiménez & Robert Nicholls, 2012. "Flood hazard and damage assessment in the Ebro Delta (NW Mediterranean) to relative sea level rise," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 62(3), pages 1301-1321, July.
    9. Ozgur Kisi & Alireza Nia & Mohsen Gosheh & Mohammad Tajabadi & Azadeh Ahmadi, 2012. "Intermittent Streamflow Forecasting by Using Several Data Driven Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(2), pages 457-474, January.
    10. Chang-Jo Chung & Andrea Fabbri, 2003. "Validation of Spatial Prediction Models for Landslide Hazard Mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 30(3), pages 451-472, November.
    11. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    12. Yi-Ru Chen & Chao-Hsien Yeh & Bofu Yu, 2011. "Integrated application of the analytic hierarchy process and the geographic information system for flood risk assessment and flood plain management in Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1261-1276, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hossain, Mohammad Khalid & Meng, Qingmin, 2020. "A fine-scale spatial analytics of the assessment and mapping of buildings and population at different risk levels of urban flood," Land Use Policy, Elsevier, vol. 99(C).
    2. Fawz Manyaga & Nilufer Nilufer & Zineb Hajaoui, 2020. "A systematic literature review on multi-criteria decision making in disaster management," International Journal of Business Ecosystem & Strategy (2687-2293), Bussecon International Academy, vol. 2(2), pages 1-7, April.
    3. Zaineb Ali & Noura Dahri & Marnik Vanclooster & Ali Mehmandoostkotlar & Adnane Labbaci & Mongi Ben Zaied & Mohamed Ouessar, 2023. "Hybrid Fuzzy AHP and Frequency Ratio Methods for Assessing Flood Susceptibility in Bayech Basin, Southwestern Tunisia," Sustainability, MDPI, vol. 15(21), pages 1-19, October.
    4. Romulus Costache, 2019. "Flood Susceptibility Assessment by Using Bivariate Statistics and Machine Learning Models - A Useful Tool for Flood Risk Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(9), pages 3239-3256, July.
    5. Preeti Ramkar & Sanjaykumar M. Yadav, 2021. "Flood risk index in data-scarce river basins using the AHP and GIS approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 1119-1140, October.
    6. Kazi Faiz Alam & Tofael Ahamed, 2023. "Erosion vulnerable area assessment of Jamuna River system in Bangladesh using a multi-criteria-based geospatial fuzzy expert system and remote sensing," Asia-Pacific Journal of Regional Science, Springer, vol. 7(2), pages 433-454, June.
    7. Mohammad Khalid Hossain & Qingmin Meng, 2020. "A Multi-Decadal Spatial Analysis of Demographic Vulnerability to Urban Flood: A Case Study of Birmingham City, USA," Sustainability, MDPI, vol. 12(21), pages 1-32, November.
    8. Mariamawit Borga & Burak F. Tanyu & Celso M. Ferreira & Juan L. Garzon & Michael Onufrychuk, 2017. "A geospatial framework to estimate depth of scour under buildings due to storm surge in coastal areas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1285-1311, July.
    9. Sunmin Lee & Saro Lee & Moung-Jin Lee & Hyung-Sup Jung, 2018. "Spatial Assessment of Urban Flood Susceptibility Using Data Mining and Geographic Information System (GIS) Tools," Sustainability, MDPI, vol. 10(3), pages 1-19, February.
    10. Elissavet Feloni & Andreas Anayiotos & Evangelos Baltas, 2022. "A Spatial Analysis Approach for Urban Flood Occurrence and Flood Impact Based on Geomorphological, Meteorological, and Hydrological Factors," Geographies, MDPI, vol. 2(3), pages 1-12, August.
    11. Raymond Seyeram Nkonu & Mary Antwi & Mark Amo-Boateng & Benjamin Wullobayi Dekongmen, 2023. "GIS-based multi-criteria analytical hierarchy process modelling for urban flood vulnerability analysis, Accra Metropolis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(2), pages 1541-1568, June.
    12. Nikunj K. Mangukiya & Ashutosh Sharma, 2022. "Flood risk mapping for the lower Narmada basin in India: a machine learning and IoT-based framework," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(2), pages 1285-1304, September.
    13. Subhankar Chakraborty & Sutapa Mukhopadhyay, 2019. "Assessing flood risk using analytical hierarchy process (AHP) and geographical information system (GIS): application in Coochbehar district of West Bengal, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(1), pages 247-274, October.
    14. Danish Farooq & Sarbast Moslem & Rana Faisal Tufail & Omid Ghorbanzadeh & Szabolcs Duleba & Ahsen Maqsoom & Thomas Blaschke, 2020. "Analyzing the Importance of Driver Behavior Criteria Related to Road Safety for Different Driving Cultures," IJERPH, MDPI, vol. 17(6), pages 1-14, March.
    15. Showmitra Kumar Sarkar & Saifullah Bin Ansar & Khondaker Mohammed Mohiuddin Ekram & Mehedi Hasan Khan & Swapan Talukdar & Mohd Waseem Naikoo & Abu Reza Towfiqul Islam & Atiqur Rahman & Amir Mosavi, 2022. "Developing Robust Flood Susceptibility Model with Small Numbers of Parameters in Highly Fertile Regions of Northwest Bangladesh for Sustainable Flood and Agriculture Management," Sustainability, MDPI, vol. 14(7), pages 1-23, March.
    16. Jihye Ha & Jung Eun Kang, 2022. "Assessment of flood-risk areas using random forest techniques: Busan Metropolitan City," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2407-2429, April.
    17. Ahmad Rajabi & Saeid Shabanlou & Fariborz Yosefvand & Afshin Kiani, 2021. "Exploring the sample size and replications scenarios effect on spatial prediction of flood, using MARS and MaxEnt methods case study: saliantape catchment, Golestan, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 871-901, October.
    18. Mahmoud Rezaei & Farshad Amiraslani & Najmeh Neysani Samani & Kazem Alavipanah, 2020. "Application of two fuzzy models using knowledge-based and linear aggregation approaches to identifying flooding-prone areas in Tehran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(1), pages 363-385, January.
    19. Maziar Mohammadi & Hamid Darabi & Fahimeh Mirchooli & Alireza Bakhshaee & Ali Torabi Haghighi, 2021. "Flood risk mapping and crop-water loss modeling using water footprint analysis in agricultural watershed, northern Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 2007-2025, January.
    20. Omid Rahmati & Hamid Reza Pourghasemi, 2017. "Identification of Critical Flood Prone Areas in Data-Scarce and Ungauged Regions: A Comparison of Three Data Mining Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(5), pages 1473-1487, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Netra Bhandary & Ranjan Dahal & Manita Timilsina & Ryuichi Yatabe, 2013. "Rainfall event-based landslide susceptibility zonation mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 365-388, October.
    2. Anna Roccati & Guido Paliaga & Fabio Luino & Francesco Faccini & Laura Turconi, 2021. "GIS-Based Landslide Susceptibility Mapping for Land Use Planning and Risk Assessment," Land, MDPI, vol. 10(2), pages 1-28, February.
    3. Dimitrios Myronidis & Charalambos Papageorgiou & Stavros Theophanous, 2016. "Landslide susceptibility mapping based on landslide history and analytic hierarchy process (AHP)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 245-263, March.
    4. Bosy A. El-Haddad & Ahmed M. Youssef & Hamid R. Pourghasemi & Biswajeet Pradhan & Abdel-Hamid El-Shater & Mohamed H. El-Khashab, 2021. "Flood susceptibility prediction using four machine learning techniques and comparison of their performance at Wadi Qena Basin, Egypt," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 83-114, January.
    5. Dimitrios Myronidis & Charalambos Papageorgiou & Stavros Theophanous, 2016. "Landslide susceptibility mapping based on landslide history and analytic hierarchy process (AHP)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 245-263, March.
    6. Ebrahim Ahmadisharaf & Alfred J. Kalyanapu & Eun-Sung Chung, 2017. "Sustainability-Based Flood Hazard Mapping of the Swannanoa River Watershed," Sustainability, MDPI, vol. 9(10), pages 1-15, September.
    7. Stefanos Stefanidis & Dimitrios Stathis, 2013. "Assessment of flood hazard based on natural and anthropogenic factors using analytic hierarchy process (AHP)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 569-585, September.
    8. Yi-Ru Chen & Chao-Hsien Yeh & Bofu Yu, 2016. "Flood damage assessment of an urban area in Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 1045-1055, September.
    9. Ashraf Abdelkarim & Ahmed F. D. Gaber & Ibtesam I. Alkadi & Haya M. Alogayell, 2019. "Integrating Remote Sensing and Hydrologic Modeling to Assess the Impact of Land-Use Changes on the Increase of Flood Risk: A Case Study of the Riyadh–Dammam Train Track, Saudi Arabia," Sustainability, MDPI, vol. 11(21), pages 1-32, October.
    10. Nikolaos Tavoularis & George Papathanassiou & Athanassios Ganas & Panagiotis Argyrakis, 2021. "Development of the Landslide Susceptibility Map of Attica Region, Greece, Based on the Method of Rock Engineering System," Land, MDPI, vol. 10(2), pages 1-31, February.
    11. Raquel Melo & José Luís Zêzere, 2017. "Modeling debris flow initiation and run-out in recently burned areas using data-driven methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1373-1407, September.
    12. Massimo Conforti & Gaetano Robustelli & Francesco Muto & Salvatore Critelli, 2012. "Application and validation of bivariate GIS-based landslide susceptibility assessment for the Vitravo river catchment (Calabria, south Italy)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(1), pages 127-141, March.
    13. Yangfan Xiao & Shanzhen Yi & Zhongqian Tang, 2018. "A Spatially Explicit Multi-Criteria Analysis Method on Solving Spatial Heterogeneity Problems for Flood Hazard Assessment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3317-3335, August.
    14. Halil Akinci & Mustafa Zeybek, 2021. "Comparing classical statistic and machine learning models in landslide susceptibility mapping in Ardanuc (Artvin), Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 1515-1543, September.
    15. Ananta Pradhan & Yun-Tae Kim, 2014. "Relative effect method of landslide susceptibility zonation in weathered granite soil: a case study in Deokjeok-ri Creek, South Korea," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 1189-1217, June.
    16. L. Lombardo & M. Cama & C. Conoscenti & M. Märker & E. Rotigliano, 2015. "Binary logistic regression versus stochastic gradient boosted decision trees in assessing landslide susceptibility for multiple-occurring landslide events: application to the 2009 storm event in Messi," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1621-1648, December.
    17. Bandi Aneesha Satya & Meshapam Shashi & Deva Pratap, 2019. "A geospatial approach to flash flood hazard mapping in the city of Warangal, Telangana, India," Environmental & Socio-economic Studies, Sciendo, vol. 7(3), pages 1-13, September.
    18. Emre Özþahin, 2015. "Landslide Susceptibility Analysis of Tekirdað City Using Geographic Information Systems (GIS) and Analytic Hierarchy Process (AHP)," Eurasian Academy Of Sciences Social Sciences Journal, Eurasian Academy Of Sciences, vol. 6(6), pages 50-71, November.
    19. Yenan Wu & Ping-an Zhong & Yu Zhang & Bin Xu & Biao Ma & Kun Yan, 2015. "Integrated flood risk assessment and zonation method: a case study in Huaihe River basin, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 635-651, August.
    20. Shakeel Mahmood & Kiran Hamayon, 2021. "Geo-spatial assessment of community vulnerability to flood along the Ravi River, Ravi Town, Lahore, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2825-2844, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:83:y:2016:i:2:d:10.1007_s11069-016-2357-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.