IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v32y2018i10d10.1007_s11269-018-1993-6.html
   My bibliography  Save this article

A Spatially Explicit Multi-Criteria Analysis Method on Solving Spatial Heterogeneity Problems for Flood Hazard Assessment

Author

Listed:
  • Yangfan Xiao

    (Huazhong University of Science and Technology)

  • Shanzhen Yi

    (Huazhong University of Science and Technology)

  • Zhongqian Tang

    (Huazhong University of Science and Technology)

Abstract

Flood hazard assessment and mapping of flood prone area are of great importance for flood management, as well as the reduction of potential losses of life and property caused by flooding. In this study, a spatially explicit multi-criteria analysis approach which emphasizes on spatial heterogeneity in decision-making process is developed for flood hazard assessment, and it has been applied to the area including Hanyang, Caidian and Hannan of Wuhan, China, where flood events occur frequently. Factors associated with flood mechanism and characteristics of the watershed itself were selected, and primary analysis was implemented to make the factors concise and essential. This paper emphasized the spatial heterogeneity problem in flood hazard assessment by incorporating spatial ordered weighted averaging (OWA) method into windows-based local spatial multi-criteria analysis (MCA). On one hand, the local normalization was applied to normalize the criteria, and entropy-based local criteria weights were calculated to adjust the criteria weight at local level. On the other hand, spatial OWA method with spatially variable risk preference was applied to assign different order weights at different locations. The results indicate that the proposed approach focused on the flood hazard at local level, and the flood hazard map presented more dispersive distribution of the high and very high hazard area than that derived by global MCA. Furthermore, flood hazard in important and unimportant area was distinguished by paying more attention to the former one. And the distribution of high hazard area tends to be mainly located in populated and developed areas.

Suggested Citation

  • Yangfan Xiao & Shanzhen Yi & Zhongqian Tang, 2018. "A Spatially Explicit Multi-Criteria Analysis Method on Solving Spatial Heterogeneity Problems for Flood Hazard Assessment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3317-3335, August.
  • Handle: RePEc:spr:waterr:v:32:y:2018:i:10:d:10.1007_s11269-018-1993-6
    DOI: 10.1007/s11269-018-1993-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-018-1993-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-018-1993-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Francesca Franci & Gabriele Bitelli & Emanuele Mandanici & Diofantos Hadjimitsis & Athos Agapiou, 2016. "Satellite remote sensing and GIS-based multi-criteria analysis for flood hazard mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 31-51, October.
    2. G. Papaioannou & L. Vasiliades & A. Loukas, 2015. "Multi-Criteria Analysis Framework for Potential Flood Prone Areas Mapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(2), pages 399-418, January.
    3. Xiao-ling Yang & Jie-hua Ding & Hui Hou, 2013. "Application of a triangular fuzzy AHP approach for flood risk evaluation and response measures analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 657-674, September.
    4. Yamei Wang & Zhongwu Li & Zhenghong Tang & Guangming Zeng, 2011. "A GIS-Based Spatial Multi-Criteria Approach for Flood Risk Assessment in the Dongting Lake Region, Hunan, Central China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(13), pages 3465-3484, October.
    5. Brad Carter & Claus Rinner, 2014. "Locally weighted linear combination in a vector geographic information system," Journal of Geographical Systems, Springer, vol. 16(3), pages 343-361, July.
    6. Yenan Wu & Ping-an Zhong & Yu Zhang & Bin Xu & Biao Ma & Kun Yan, 2015. "Integrated flood risk assessment and zonation method: a case study in Huaihe River basin, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 635-651, August.
    7. Chang, Da-Yong, 1996. "Applications of the extent analysis method on fuzzy AHP," European Journal of Operational Research, Elsevier, vol. 95(3), pages 649-655, December.
    8. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    9. Yi-Ru Chen & Chao-Hsien Yeh & Bofu Yu, 2011. "Integrated application of the analytic hierarchy process and the geographic information system for flood risk assessment and flood plain management in Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1261-1276, December.
    10. Imran Jamali & Ulla Mörtberg & Bo Olofsson & Muhammad Shafique, 2014. "A Spatial Multi-Criteria Analysis Approach for Locating Suitable Sites for Construction of Subsurface Dams in Northern Pakistan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(14), pages 5157-5174, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karim Solaimani & Fatemeh Shokrian & Shadman Darvishi, 2023. "An Assessment of the Integrated Multi-Criteria and New Models Efficiency in Watershed Flood Mapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(1), pages 403-425, January.
    2. Ming Zhong & Jiao Wang & Liang Gao & Kairong Lin & Yang Hong, 2019. "Fuzzy Risk Assessment of Flash Floods Using a Cloud-Based Information Diffusion Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(7), pages 2537-2553, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shanshan Hu & Xiangjun Cheng & Demin Zhou & Hong Zhang, 2017. "GIS-based flood risk assessment in suburban areas: a case study of the Fangshan District, Beijing," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1525-1543, July.
    2. Rofiat Bunmi Mudashiru & Nuridah Sabtu & Rozi Abdullah & Azlan Saleh & Ismail Abustan, 2022. "A comparison of three multi-criteria decision-making models in mapping flood hazard areas of Northeast Penang, Malaysia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 1903-1939, July.
    3. Kadriye Burcu Yavuz Kumlu & Şule Tüdeş, 2019. "Determination of earthquake-risky areas in Yalova City Center (Marmara region, Turkey) using GIS-based multicriteria decision-making techniques (analytical hierarchy process and technique for order pr," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(3), pages 999-1018, April.
    4. Lin Lin & Zening Wu & Qiuhua Liang, 2019. "Urban flood susceptibility analysis using a GIS-based multi-criteria analysis framework," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 455-475, June.
    5. M. M. Yagoub & Aishah A. Alsereidi & Elfadil A. Mohamed & Punitha Periyasamy & Reem Alameri & Salama Aldarmaki & Yaqein Alhashmi, 2020. "Newspapers as a validation proxy for GIS modeling in Fujairah, United Arab Emirates: identifying flood-prone areas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 111-141, October.
    6. Yenan Wu & Ping-an Zhong & Yu Zhang & Bin Xu & Biao Ma & Kun Yan, 2015. "Integrated flood risk assessment and zonation method: a case study in Huaihe River basin, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 635-651, August.
    7. Jiayang Zhang & Yangbo Chen, 2019. "Risk Assessment of Flood Disaster Induced by Typhoon Rainstorms in Guangdong Province, China," Sustainability, MDPI, vol. 11(10), pages 1-20, May.
    8. Abdulwaheed Tella & Abdul-Lateef Balogun, 2020. "Ensemble fuzzy MCDM for spatial assessment of flood susceptibility in Ibadan, Nigeria," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2277-2306, December.
    9. Sajid Ali & Sang-Moon Lee & Choon-Man Jang, 2017. "Determination of the Most Optimal On-Shore Wind Farm Site Location Using a GIS-MCDM Methodology: Evaluating the Case of South Korea," Energies, MDPI, vol. 10(12), pages 1-22, December.
    10. Choudhary, Devendra & Shankar, Ravi, 2012. "An STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location: A case study from India," Energy, Elsevier, vol. 42(1), pages 510-521.
    11. Bojan Srdjevic & Yvonilde Medeiros, 2008. "Fuzzy AHP Assessment of Water Management Plans," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(7), pages 877-894, July.
    12. Deng, Yanfei & Xu, Jiuping & Liu, Ying & Mancl, Karen, 2014. "Biogas as a sustainable energy source in China: Regional development strategy application and decision making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 294-303.
    13. Caprioli, Caterina & Bottero, Marta, 2021. "Addressing complex challenges in transformations and planning: A fuzzy spatial multicriteria analysis for identifying suitable locations for urban infrastructures," Land Use Policy, Elsevier, vol. 102(C).
    14. Pınar Kaya Samut, 2017. "Integrated FANP-f-MIGP model for supplier selection in the renewable energy sector," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 18(3), pages 427-450, May.
    15. Stefanos Stefanidis & Dimitrios Stathis, 2013. "Assessment of flood hazard based on natural and anthropogenic factors using analytic hierarchy process (AHP)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 569-585, September.
    16. Grošelj, Petra & Hodges, Donald G. & Zadnik Stirn, Lidija, 2016. "Participatory and multi-criteria analysis for forest (ecosystem) management: A case study of Pohorje, Slovenia," Forest Policy and Economics, Elsevier, vol. 71(C), pages 80-86.
    17. Yi-Ru Chen & Chao-Hsien Yeh & Bofu Yu, 2016. "Flood damage assessment of an urban area in Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 1045-1055, September.
    18. Paweł Karczmarek & Witold Pedrycz & Adam Kiersztyn, 2021. "Fuzzy Analytic Hierarchy Process in a Graphical Approach," Group Decision and Negotiation, Springer, vol. 30(2), pages 463-481, April.
    19. Mohamed Hanine & Omar Boutkhoum & Tarik Agouti & Abdessadek Tikniouine, 2017. "A new integrated methodology using modified Delphi-fuzzy AHP-PROMETHEE for Geospatial Business Intelligence selection," Information Systems and e-Business Management, Springer, vol. 15(4), pages 897-925, November.
    20. Mohamed Hanine & Omar Boutkhoum & Abderrafie El Maknissi & Abdessadek Tikniouine & Tarik Agouti, 2016. "Decision making under uncertainty using PEES–fuzzy AHP–fuzzy TOPSIS methodology for landfill location selection," Environment Systems and Decisions, Springer, vol. 36(4), pages 351-367, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:32:y:2018:i:10:d:10.1007_s11269-018-1993-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.