IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v61y2012i2p403-423.html
   My bibliography  Save this article

Thermal hazards zonation and permafrost change over the Qinghai–Tibet Plateau

Author

Listed:
  • Zhongqiong Zhang
  • Qingbai Wu

Abstract

The Qinghai–Tibet Plateau is the largest permafrost region at low latitude in the world. Climate warming may lead to permafrost temperature rise, ground ice thawing and permafrost degradation, thus inducing thermal hazards. In this paper, the ARCGIS method is used to calculate the changes of ground ice content and active layer thickness under different climate scenarios on the Qinghai–Tibet Plateau, in the coming decades, thus providing the basis for hazards zonation. The method proposed by Nelson in 2002 was used for hazards zonation after revision, which was based on the changes of active layer thickness and ground ice content. The study shows that permafrost exhibits different degrees of degradation in the different climate scenarios. The thawing of ground ice and the change from low-temperature to high-temperature permafrost were the main permafrost degradation modes. This process, accompanied with thinning permafrost, increases the active layer thickness and the northward movement of the permafrost southern boundary. By 2099, the permafrost area decreases by 46.2, 16.01 and 8.5% under scenarios A2, A1B and B1, respectively. The greatest danger zones are located mainly to the south of the West Kunlun Mountains, the middle of the Qingnan Valley, the southern piedmont of the Gangdise and Nyainqentanglha Mountains and some regions in the southern piedmont of the Himalayas. The Qinghai–Tibet Plateau permafrost region is in the low-risk category. Climate warming exacerbates the development of thermal hazards. In 2099, the permafrost region is mainly in the middle-risk category, and only a small portion is in the low-risk category. Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • Zhongqiong Zhang & Qingbai Wu, 2012. "Thermal hazards zonation and permafrost change over the Qinghai–Tibet Plateau," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(2), pages 403-423, March.
  • Handle: RePEc:spr:nathaz:v:61:y:2012:i:2:p:403-423
    DOI: 10.1007/s11069-011-9923-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-011-9923-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-011-9923-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. F. Nelson & O. Anisimov & N. Shiklomanov, 2002. "Climate Change and Hazard Zonation in the Circum-Arctic Permafrost Regions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 26(3), pages 203-225, July.
    2. V. E. Romanovsky & T. E. Osterkamp, 1995. "Interannual variations of the thermal regime of the active layer and near‐surface permafrost in northern Alaska," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 6(4), pages 313-335, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuangyang Li & Yuanming Lai & Wansheng Pei & Shujuan Zhang & Hua Zhong, 2014. "Moisture–temperature changes and freeze–thaw hazards on a canal in seasonally frozen regions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 287-308, June.
    2. Shengbo Xie & Jianjun Qu & Xiangtian Xu & Yingjun Pang, 2017. "Interactions between freeze–thaw actions, wind erosion desertification, and permafrost in the Qinghai–Tibet Plateau," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 829-850, January.
    3. Tao Zhao & Chong Wang & Jiachen Wang, 2023. "Influence of Climate Warming on the Ground Surface Stability over Permafrost along the Qinghai–Tibet Engineering Corridor," Sustainability, MDPI, vol. 15(23), pages 1-19, November.
    4. Yi-ping Fang & Fu-biao Zhu & Shu-hua Yi & Xiao-ping Qiu & Yong-jiang Ding, 2021. "Ecological carrying capacity of alpine grassland in the Qinghai–Tibet Plateau based on the structural dynamics method," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 12550-12578, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tao Zhao & Chong Wang & Jiachen Wang, 2023. "Influence of Climate Warming on the Ground Surface Stability over Permafrost along the Qinghai–Tibet Engineering Corridor," Sustainability, MDPI, vol. 15(23), pages 1-19, November.
    2. Pallab Mozumder & Ryan Helton & Robert P. Berrens, 2009. "Provision of a Wildfire Risk Map: Informing Residents in the Wildland Urban Interface," Risk Analysis, John Wiley & Sons, vol. 29(11), pages 1588-1600, November.
    3. Fanny Groundstroem & Sirkku Juhola, 2019. "A framework for identifying cross-border impacts of climate change on the energy sector," Environment Systems and Decisions, Springer, vol. 39(1), pages 3-15, March.
    4. Ilmo T. Kukkonen & Elli Suhonen & Ekaterina Ezhova & Hanna Lappalainen & Victor Gennadinik & Olga Ponomareva & Andrey Gravis & Victoria Miles & Markku Kulmala & Vladimir Melnikov & Dmitry Drozdov, 2020. "Observations and modelling of ground temperature evolution in the discontinuous permafrost zone in Nadym, north‐west Siberia," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 31(2), pages 264-280, April.
    5. Yanhu, Mu & Guoyu, Li & Wei, Ma & Zhengmin, Song & Zhiwei, Zhou & Wang, Fei, 2020. "Rapid permafrost thaw induced by heat loss from a buried warm-oil pipeline and a new mitigation measure combining seasonal air-cooled embankment and pipe insulation," Energy, Elsevier, vol. 203(C).
    6. Mauro Guglielmin & Stefano Ponti & Emanuele Forte & Nicoletta Cannone, 2021. "Recent thermokarst evolution in the Italian Central Alps," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 32(2), pages 299-317, April.
    7. James Ford & Clara Champalle & Pamela Tudge & Rudy Riedlsperger & Trevor Bell & Erik Sparling, 2015. "Evaluating climate change vulnerability assessments: a case study of research focusing on the built environment in northern Canada," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(8), pages 1267-1288, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:61:y:2012:i:2:p:403-423. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.