IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v85y2017i2d10.1007_s11069-016-2606-4.html
   My bibliography  Save this article

Interactions between freeze–thaw actions, wind erosion desertification, and permafrost in the Qinghai–Tibet Plateau

Author

Listed:
  • Shengbo Xie

    (Chinese Academy of Sciences)

  • Jianjun Qu

    (Chinese Academy of Sciences)

  • Xiangtian Xu

    (Inner Mongolia University)

  • Yingjun Pang

    (Chinese Academy of Forestry)

Abstract

The unique natural environment of the Qinghai–Tibet Plateau has led to the development of widespread permafrost and desertification. However, the relationship between desertification and permafrost is rarely explored. Here we study the interaction between desertification and permafrost using a combination of simulations, experiments, and field observations in the Qinghai–Tibet Plateau. Results show the cohesion values of the test samples that experienced 1, 3, and 6 freeze–thaw cycle times decreased by 65.9, 46.0, and 35.5 %, respectively, and the compressive strength of the test samples decreased by 69.6, 39.6, and 34.7 %, respectively, compared to the test samples that did not experience freeze–thaw cycles. The wind erosion rate of the test block eroded by sand-bearing wind was far larger than that by clean wind under the same conditions; the maximum value was 50 times higher than that by clean wind. The wind erosion rate increased with an increasing number of freeze–thaw cycles, water content, and freeze–thaw temperature difference. The ground temperature below the sand layer was decreased, compared to the natural ground surface that without sand layer covering, the drop amplitude of yearly average temperature was roughly maintained at 0.2 °C below the thick sand layer (1.2 m), and the maximum drop of yearly average temperature was 0.7 °C below the thin sand layer (0.1 m). Therefore, with the presence of water, the destruction of surface soil structure caused by repeated and fierce freeze–thaw actions is the main cause of wind erosion desertification in the permafrost region of Qinghai–Tibet Plateau, and sand-bearing wind is the main dynamic force. The development of eolian sand deposits after the desertification emerges. As a result, the properties of the underlying surface are altered. Due to the high reflectivity and poor heat conductivity of the sand layer, the heat exchange of the land–atmosphere system is impeded, causing a drop in the ground temperature of the underlying permafrost that subsequently preserves the permafrost.

Suggested Citation

  • Shengbo Xie & Jianjun Qu & Xiangtian Xu & Yingjun Pang, 2017. "Interactions between freeze–thaw actions, wind erosion desertification, and permafrost in the Qinghai–Tibet Plateau," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 829-850, January.
  • Handle: RePEc:spr:nathaz:v:85:y:2017:i:2:d:10.1007_s11069-016-2606-4
    DOI: 10.1007/s11069-016-2606-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-016-2606-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-016-2606-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bing Guo & Yi Zhou & Jinfeng Zhu & Wenliang Liu & Futao Wang & Litao Wang & Lin Jiang, 2015. "An estimation method of soil freeze-thaw erosion in the Qinghai–Tibet Plateau," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1843-1857, September.
    2. Fujun Niu & Jing Luo & Zhanju Lin & Minhao Liu & Guoan Yin, 2014. "Thaw-induced slope failures and susceptibility mapping in permafrost regions of the Qinghai–Tibet Engineering Corridor, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 1667-1682, December.
    3. Hui Peng & Wei Ma & Yan-hu Mu & Long Jin & Kun Yuan, 2015. "Degradation characteristics of permafrost under the effect of climate warming and engineering disturbance along the Qinghai–Tibet Highway," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2589-2605, February.
    4. Shiwei Shen & Caichu Xia & Jihui Huang & Yan Li, 2015. "Influence of seasonal melt layer depth on the stability of surrounding rock in permafrost regions based on the measurement," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2545-2557, February.
    5. Haibo Wang & Mingguo Ma & Liying Geng, 2015. "Monitoring the recent trend of aeolian desertification using Landsat TM and Landsat 8 imagery on the north-east Qinghai–Tibet Plateau in the Qinghai Lake basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1753-1772, December.
    6. Zhongqiong Zhang & Qingbai Wu, 2012. "Thermal hazards zonation and permafrost change over the Qinghai–Tibet Plateau," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(2), pages 403-423, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shengbo Xie & Jianjun Qu & Qingjie Han & Yingjun Pang, 2020. "Wind Dynamic Environment and Wind Tunnel Simulation Experiment of Bridge Sand Damage in Xierong Section of Lhasa–Linzhi Railway," Sustainability, MDPI, vol. 12(14), pages 1-14, July.
    2. Xiao Feng & Jianjun Qu & Qingbin Fan & Lihai Tan & Zhishan An, 2019. "Characteristics of Desertification and Short-Term Effectiveness of Differing Treatments on Shifting Sand Dune Stabilization in an Alpine Rangeland," IJERPH, MDPI, vol. 16(24), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuangyang Li & Yuanming Lai & Wansheng Pei & Shujuan Zhang & Hua Zhong, 2014. "Moisture–temperature changes and freeze–thaw hazards on a canal in seasonally frozen regions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 287-308, June.
    2. Kai Cui & Xiaotong Qin, 2023. "Landslide risk assessment of frozen soil slope in Qinghai Tibet Plateau during spring thawing period under the coupling effect of moisture and heat," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(3), pages 2399-2416, February.
    3. Tao Zhao & Chong Wang & Jiachen Wang, 2023. "Influence of Climate Warming on the Ground Surface Stability over Permafrost along the Qinghai–Tibet Engineering Corridor," Sustainability, MDPI, vol. 15(23), pages 1-19, November.
    4. Mingyi Zhang & Wansheng Pei & Xiyin Zhang & Jianguo Lu, 2015. "Lateral thermal disturbance of embankments in the permafrost regions of the Qinghai-Tibet Engineering Corridor," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 2121-2142, September.
    5. Yi-ping Fang & Fu-biao Zhu & Shu-hua Yi & Xiao-ping Qiu & Yong-jiang Ding, 2021. "Ecological carrying capacity of alpine grassland in the Qinghai–Tibet Plateau based on the structural dynamics method," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 12550-12578, August.
    6. Yapeng Chen & Tong Wu & Xiaoshi Yan & Shang Shi & Jianyong Li & Jinyu Dong, 2023. "Stress and Deformation Characteristics of Tunnel Surrounding Rock under Alteration," Sustainability, MDPI, vol. 15(2), pages 1-17, January.
    7. Guoqing Chen & Yi Wan & Yang Li & XiangJun Pei & Da Huang, 2021. "Time-dependent damage mechanism of rock deterioration under freeze–thaw cycles linked to alpine hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 635-660, August.
    8. Haibo Wang & Mingguo Ma, 2016. "Impacts of Climate Change and Anthropogenic Activities on the Ecological Restoration of Wetlands in the Arid Regions of China," Energies, MDPI, vol. 9(3), pages 1-25, March.
    9. Zhijie Wang & Yuan Su, 2020. "Assessment of Soil Erosion in the Qinba Mountains of the Southern Shaanxi Province in China Using the RUSLE Model," Sustainability, MDPI, vol. 12(5), pages 1-17, February.
    10. Fengyun Liu & Zhushan Shao & Rujia Qiao & Shuocheng Zhang & Wen-Chieh Cheng, 2020. "The influence of compaction energy on frost-heave characteristics of coarse-grained soil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(2), pages 897-908, January.
    11. Salih Muhammad Awadh & Ahmed H. Al-Sulttani & Zaher Mundher Yaseen, 2022. "Temporal dynamic drought interpretation of Sawa Lake: case study located at the Southern Iraqi region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 619-638, May.
    12. Mingzhe Zhang & Bao Zhou & Qiangong Cheng & Lingkai Shen & Aiguo Xing & Yu Zhuang, 2021. "Investigation of the triggering mechanism and runout characteristics of an earthflow in Zhimei village, Chengduo, Qinghai, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 903-929, October.
    13. Juanle Wang & Haishuo Wei & Kai Cheng & Ge Li & Altansukh Ochir & Lingling Bian & Davaadorj Davaasuren & Sonomdagva Chonokhuu & Elbegjargal Nasanbat, 2019. "Spatio-Temporal Pattern of Land Degradation along the China-Mongolia Railway (Mongolia)," Sustainability, MDPI, vol. 11(9), pages 1-20, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:85:y:2017:i:2:d:10.1007_s11069-016-2606-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.