IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v107y2021i3d10.1007_s11069-020-04436-4.html
   My bibliography  Save this article

Dynamic assessment and early warning of ecological security: a case study of the Yangtze river urban agglomeration

Author

Listed:
  • Qianqian Huang

    (Nanjing University of Information Science and Technology)

  • Benhong Peng

    (Nanjing University of Information Science and Technology
    Nanjing University of Information Science and Technology)

  • Guo Wei

    (University of North Carolina At Pembroke)

  • Anxia Wan

    (Nanjing University of Information Science and Technology)

Abstract

Ecological security is vital to the survival of human beings and critical to the sustainable development of socioeconomic environment. In view of the deficiencies of the static assessment of ecological security, in this paper ,a dynamical evaluation on the ecological security of urban agglomerations is conducted by utilizing an index system developed from the Driving Force-Pressure-State-Response model. Further, an empirical study is carried out for the Yangtze River Urban Agglomeration to explore the ecological security alarms and change rules: Incorporating the statistical data from 2005 to 2017 into the investigation, the combined weight method is applied to calculate the weight of ecological safety over ecological security contribution, and the Moran's I index is implemented to analyze the changes in the spatial pattern. The results show that (1) The ecological security index of the Yangtze River Urban Agglomeration exhibits a smaller fluctuation primarily caused by the transformation of economic development mode, and the overall ecological security has been improved since 2005 from less safe to security level in general. (2) Spatial differences exist between North and South as well as between urban agglomerations, and the overall ecological security is improved due to ecological protection measures and industrial structure adjustment, and (3) The levels of early warning for these cities in the Yangtze River Urban Agglomeration differ, Varying between medium level and severe level. Furthermore, It is also found that human activities greatly impact the ecological security, and the intensity of land development is the greatest threat.

Suggested Citation

  • Qianqian Huang & Benhong Peng & Guo Wei & Anxia Wan, 2021. "Dynamic assessment and early warning of ecological security: a case study of the Yangtze river urban agglomeration," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2441-2461, July.
  • Handle: RePEc:spr:nathaz:v:107:y:2021:i:3:d:10.1007_s11069-020-04436-4
    DOI: 10.1007/s11069-020-04436-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-020-04436-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-020-04436-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ifeanyi C. Ezeonu & Francis C. Ezeonu, 2000. "The environment and global security," Environment Systems and Decisions, Springer, vol. 20(1), pages 41-48, March.
    2. Uehara, Takuro, 2013. "Ecological threshold and ecological economic threshold: Implications from an ecological economic model with adaptation," Ecological Economics, Elsevier, vol. 93(C), pages 374-384.
    3. Jogo, Wellington & Hassan, Rashid, 2010. "Balancing the use of wetlands for economic well-being and ecological security: The case of the Limpopo wetland in southern Africa," Ecological Economics, Elsevier, vol. 69(7), pages 1569-1579, May.
    4. Peter G. Kevan & Randolf Menzel, 2012. "The plight of pollination and the interface of neurobiology, ecology and food security," Environment Systems and Decisions, Springer, vol. 32(3), pages 300-310, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qian Zuo & Yong Zhou & Jingyi Liu, 2022. "Construction and Optimization Strategy of an Ecological Network in Mountainous Areas: A Case Study in Southwestern Hubei Province, China," IJERPH, MDPI, vol. 19(15), pages 1-27, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pogany, Peter, 2013. "Thermodynamic Isolation and the New World Order," MPRA Paper 49924, University Library of Munich, Germany.
    2. Gong, Jian-zhou & Liu, Yan-sui & Xia, Bei-cheng & Zhao, Guan-wei, 2009. "Urban ecological security assessment and forecasting, based on a cellular automata model: A case study of Guangzhou, China," Ecological Modelling, Elsevier, vol. 220(24), pages 3612-3620.
    3. Caiyao Xu & Lijie Pu & Ming Zhu & Jianguo Li & Xinjian Chen & Xiaohan Wang & Xuefeng Xie, 2016. "Ecological Security and Ecosystem Services in Response to Land Use Change in the Coastal Area of Jiangsu, China," Sustainability, MDPI, vol. 8(8), pages 1-24, August.
    4. Sanga, G.J. & Mungatana, E.D., 2016. "Integrating ecology and economics in understanding responses in securing land-use externalities internalization in water catchments," Ecological Economics, Elsevier, vol. 121(C), pages 28-39.
    5. Xiaoyang Liu & Ming Wei & Jian Zeng, 2020. "Simulating Urban Growth Scenarios Based on Ecological Security Pattern: A Case Study in Quanzhou, China," IJERPH, MDPI, vol. 17(19), pages 1-20, October.
    6. Yi Lu & Xiangrong Wang & Yujing Xie & Kun Li & Yiyang Xu, 2016. "Integrating Future Land Use Scenarios to Evaluate the Spatio-Temporal Dynamics of Landscape Ecological Security," Sustainability, MDPI, vol. 8(12), pages 1-20, November.
    7. Renyi Yang & Wanying Du & Zisheng Yang, 2021. "Spatiotemporal Evolution and Influencing Factors of Urban Land Ecological Security in Yunnan Province," Sustainability, MDPI, vol. 13(5), pages 1-17, March.
    8. Takuro Uehara & Yoko Nagase & Wayne Wakeland, 2016. "Integrating Economics and System Dynamics Approaches for Modelling an Ecological–Economic System," Systems Research and Behavioral Science, Wiley Blackwell, vol. 33(4), pages 515-531, July.
    9. Toundji Olivier Amoussou & Sarah Edore Edewor & Yaye Deffa Wane & Chibuye Florence Kunda-Wamuwi & Donissongou Dimitri Soro, 2023. "Exploring the Influence of the Interaction of Climate Change, Manmade Threats and COVID-19 on the Livelihoods of Wetland Communities in Sub-Saharan Africa," Journal of Sustainable Development, Canadian Center of Science and Education, vol. 15(4), pages 1-97, May.
    10. Wenying Peng & Yue Sun & Can Liu & Dandan Liu, 2022. "Study on Urban Land Ecological Security Pattern and Obstacle Factors in the Beijing–Tianjin–Hebei Region," Sustainability, MDPI, vol. 15(1), pages 1-18, December.
    11. Takuro Uehara & Mateo Cordier & Bertrand Hamaide, 2018. "Fully dynamic input-output/system dynamics modeling for ecological-economic system analysis," ULB Institutional Repository 2013/277116, ULB -- Universite Libre de Bruxelles.
    12. Takuro Uehara & Mateo Cordier & Bertrand Hamaide, 2018. "Fully Dynamic Input-Output/System Dynamics Modeling for Ecological-Economic System Analysis," Sustainability, MDPI, vol. 10(6), pages 1-22, May.
    13. Lihua Chen & Yuan Ma, 2023. "Ecological Risk Identification and Ecological Security Pattern Construction of Productive Wetland Landscape," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(12), pages 4709-4731, September.
    14. Mateo Cordier & Takuro Uehara & Jeffrey Weih & Bertrand Hamaide, 2017. "An Input-output Economic Model Integrated Within a System Dynamics Ecological Model: Feedback Loop Methodology Applied to Fish Nursery Restoration," Post-Print hal-04166569, HAL.
    15. Qiuyan Liu & Mingwu Wang & Xiao Wang & Fengqiang Shen & Juliang Jin, 2018. "Land Eco-Security Assessment Based on the Multi-Dimensional Connection Cloud Model," Sustainability, MDPI, vol. 10(6), pages 1-13, June.
    16. Chun-rong Zhao & Bo Zhou & Xin Su, 2014. "Evaluation of Urban Eco-Security—A Case Study of Mianyang City, China," Sustainability, MDPI, vol. 6(4), pages 1-19, April.
    17. Zhang, Junze & Mengting, Luo & Hui, Yue & Xiyun, Chen & Chong, Feng, 2018. "Critical thresholds in ecological restoration to achieve optimal ecosystem services: An analysis based on forest ecosystem restoration projects in China," Land Use Policy, Elsevier, vol. 76(C), pages 675-678.
    18. Cruz-Garcia, Gisella S. & Sachet, Erwan & Blundo-Canto, Genowefa & Vanegas, Martha & Quintero, Marcela, 2017. "To what extent have the links between ecosystem services and human well-being been researched in Africa, Asia, and Latin America?," Ecosystem Services, Elsevier, vol. 25(C), pages 201-212.
    19. Mingxin Wen & Ting Zhang & Long Li & Longqian Chen & Sai Hu & Jia Wang & Weiqiang Liu & Yu Zhang & Lina Yuan, 2021. "Assessment of Land Ecological Security and Analysis of Influencing Factors in Chaohu Lake Basin, China from 1998–2018," Sustainability, MDPI, vol. 13(1), pages 1-28, January.
    20. Dongyan Guo & Dongyan Wang & Xiaoyong Zhong & Yuanyuan Yang & Lixin Jiang, 2021. "Spatiotemporal Changes of Land Ecological Security and Its Obstacle Indicators Diagnosis in the Beijing–Tianjin–Hebei Region," Land, MDPI, vol. 10(7), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:107:y:2021:i:3:d:10.1007_s11069-020-04436-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.