IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i12p1242-d84054.html
   My bibliography  Save this article

Integrating Future Land Use Scenarios to Evaluate the Spatio-Temporal Dynamics of Landscape Ecological Security

Author

Listed:
  • Yi Lu

    (Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China)

  • Xiangrong Wang

    (Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China)

  • Yujing Xie

    (Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China)

  • Kun Li

    (Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China)

  • Yiyang Xu

    (Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China)

Abstract

Urban ecological security is the basic principle of national ecological security. However, analyses of the spatial and temporal dynamics of ecological security remain limited, especially those that consider different scenarios of urban development. In this study, an integrated method is proposed that combines the Conversion of Land Use and its Effects (CLUE-S) model with the Pressure–State–Response (P-S-R) framework to assess landscape ecological security (LES) in Huangshan City, China under two scenarios. Our results suggest the following conclusions: (1) the spatial and temporal dynamics of ecological security are closely related to the urbanization process; (2) although the average values of landscape ecological security are similar under different scenarios, the areas of relatively high security levels vary considerably; and (3) spatial heterogeneity in ecological security exists between different districts and counties, and the city center and its vicinity may face relatively serious declines in ecological security in the future. Overall, the proposed method not only illustrates the spatio-temporal dynamics of landscape ecological security under different scenarios but also reveals the anthropogenic effects on ecosystems by differentiating between causes, effects, and human responses at the landscape scale. This information is of great significance to decision-makers for future urban planning and management.

Suggested Citation

  • Yi Lu & Xiangrong Wang & Yujing Xie & Kun Li & Yiyang Xu, 2016. "Integrating Future Land Use Scenarios to Evaluate the Spatio-Temporal Dynamics of Landscape Ecological Security," Sustainability, MDPI, vol. 8(12), pages 1-20, November.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:12:p:1242-:d:84054
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/12/1242/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/12/1242/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eugenia Kalnay & Ming Cai, 2003. "Impact of urbanization and land-use change on climate," Nature, Nature, vol. 423(6939), pages 528-531, May.
    2. Peter Verburg & Bas Eickhout & Hans Meijl, 2008. "A multi-scale, multi-model approach for analyzing the future dynamics of European land use," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 42(1), pages 57-77, March.
    3. Ifeanyi C. Ezeonu & Francis C. Ezeonu, 2000. "The environment and global security," Environment Systems and Decisions, Springer, vol. 20(1), pages 41-48, March.
    4. Xiaoteng Cen & Cifang Wu & Xiaoshi Xing & Ming Fang & Zhuoma Garang & Yizhou Wu, 2015. "Coupling Intensive Land Use and Landscape Ecological Security for Urban Sustainability: An Integrated Socioeconomic Data and Spatial Metrics Analysis in Hangzhou City," Sustainability, MDPI, vol. 7(2), pages 1-24, January.
    5. Castella, Jean-Christophe & Verburg, Peter H., 2007. "Combination of process-oriented and pattern-oriented models of land-use change in a mountain area of Vietnam," Ecological Modelling, Elsevier, vol. 202(3), pages 410-420.
    6. Gong, Jian-zhou & Liu, Yan-sui & Xia, Bei-cheng & Zhao, Guan-wei, 2009. "Urban ecological security assessment and forecasting, based on a cellular automata model: A case study of Guangzhou, China," Ecological Modelling, Elsevier, vol. 220(24), pages 3612-3620.
    7. Li, Yangfan & Sun, Xiang & Zhu, Xiaodong & Cao, Huhua, 2010. "An early warning method of landscape ecological security in rapid urbanizing coastal areas and its application in Xiamen, China," Ecological Modelling, Elsevier, vol. 221(19), pages 2251-2260.
    8. Zhang, Z. & Lu, W.X. & Zhao, Y. & Song, W.B., 2014. "Development tendency analysis and evaluation of the water ecological carrying capacity in the Siping area of Jilin Province in China based on system dynamics and analytic hierarchy process," Ecological Modelling, Elsevier, vol. 275(C), pages 9-21.
    9. Yang, Xin & Zheng, Xin-Qi & Chen, Rui, 2014. "A land use change model: Integrating landscape pattern indexes and Markov-CA," Ecological Modelling, Elsevier, vol. 283(C), pages 1-7.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Youjung Kim & Galen Newman, 2019. "Climate Change Preparedness: Comparing Future Urban Growth and Flood Risk in Amsterdam and Houston," Sustainability, MDPI, vol. 11(4), pages 1-24, February.
    2. Fengjie Gao & Wei Yang & Si Zhang & Xiaohui Xin & Jun Zhou & Guoming Du, 2023. "An Integrated Approach to Constructing Ecological Security Pattern in an Urbanization and Agricultural Intensification Area in Northeast China," Land, MDPI, vol. 12(2), pages 1-22, January.
    3. Youjung Kim & Galen Newman & Burak Güneralp, 2020. "A Review of Driving Factors, Scenarios, and Topics in Urban Land Change Models," Land, MDPI, vol. 9(8), pages 1-22, July.
    4. Wenying Peng & Yue Sun & Can Liu & Dandan Liu, 2022. "Study on Urban Land Ecological Security Pattern and Obstacle Factors in the Beijing–Tianjin–Hebei Region," Sustainability, MDPI, vol. 15(1), pages 1-18, December.
    5. Jinming Yan & Yue Shen & Fangzhou Xia, 2017. "Differentiated Optimization of Sustainable Land Use in Metropolitan Areas: A Demarcation of Functional Units for Land Consolidation," Sustainability, MDPI, vol. 9(8), pages 1-19, August.
    6. Yu Zhang & Pengcheng Wang & Tianwei Wang & Chongfa Cai & Zhaoxia Li & Mingjun Teng, 2018. "Scenarios Simulation of Spatio-Temporal Land Use Changes for Exploring Sustainable Management Strategies," Sustainability, MDPI, vol. 10(4), pages 1-17, March.
    7. Mingxin Wen & Ting Zhang & Long Li & Longqian Chen & Sai Hu & Jia Wang & Weiqiang Liu & Yu Zhang & Lina Yuan, 2021. "Assessment of Land Ecological Security and Analysis of Influencing Factors in Chaohu Lake Basin, China from 1998–2018," Sustainability, MDPI, vol. 13(1), pages 1-28, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qian Lin & Jiaying Mao & Jiansheng Wu & Weifeng Li & Jian Yang, 2016. "Ecological Security Pattern Analysis Based on InVEST and Least-Cost Path Model: A Case Study of Dongguan Water Village," Sustainability, MDPI, vol. 8(2), pages 1-16, February.
    2. Chun-rong Zhao & Bo Zhou & Xin Su, 2014. "Evaluation of Urban Eco-Security—A Case Study of Mianyang City, China," Sustainability, MDPI, vol. 6(4), pages 1-19, April.
    3. Caiyao Xu & Lijie Pu & Ming Zhu & Jianguo Li & Xinjian Chen & Xiaohan Wang & Xuefeng Xie, 2016. "Ecological Security and Ecosystem Services in Response to Land Use Change in the Coastal Area of Jiangsu, China," Sustainability, MDPI, vol. 8(8), pages 1-24, August.
    4. Tianyue Ma & Jing Li & Shuang Bai & Fangzhe Chang & Zhai Jiang & Xingguang Yan & Jiahao Shao, 2022. "Optimization and Construction of Ecological Security Patterns Based on Natural and Cultivated Land Disturbance," Sustainability, MDPI, vol. 14(24), pages 1-19, December.
    5. Han, Baolong & Liu, Hongxiao & Wang, Rusong, 2015. "Urban ecological security assessment for cities in the Beijing–Tianjin–Hebei metropolitan region based on fuzzy and entropy methods," Ecological Modelling, Elsevier, vol. 318(C), pages 217-225.
    6. Ge Shi & Nan Jiang & Lianqiu Yao, 2018. "Land Use and Cover Change during the Rapid Economic Growth Period from 1990 to 2010: A Case Study of Shanghai," Sustainability, MDPI, vol. 10(2), pages 1-15, February.
    7. Jian Peng & Minli Zong & Yi'na Hu & Yanxu Liu & Jiansheng Wu, 2015. "Assessing Landscape Ecological Risk in a Mining City: A Case Study in Liaoyuan City, China," Sustainability, MDPI, vol. 7(7), pages 1-23, June.
    8. Yu Han & Chaoyue Yu & Zhe Feng & Hanchu Du & Caisi Huang & Kening Wu, 2021. "Construction and Optimization of Ecological Security Pattern Based on Spatial Syntax Classification—Taking Ningbo, China, as an Example," Land, MDPI, vol. 10(4), pages 1-16, April.
    9. Fei Wang & Ning Gu, 2021. "Impact of ecological security on urban sustainability in Western China—A case study of Xi’an," Environment and Planning B, , vol. 48(5), pages 1314-1339, June.
    10. Xindong He & Xianmin Mai & Guoqiang Shen, 2019. "Delineation of Urban Growth Boundaries with SD and CLUE-s Models under Multi-Scenarios in Chengdu Metropolitan Area," Sustainability, MDPI, vol. 11(21), pages 1-13, October.
    11. Holger Cammerer & Annegret Thieken & Peter Verburg, 2013. "Spatio-temporal dynamics in the flood exposure due to land use changes in the Alpine Lech Valley in Tyrol (Austria)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(3), pages 1243-1270, September.
    12. Rui Zhou & Hao Zhang & Xin-Yue Ye & Xin-Jun Wang & Hai-Long Su, 2016. "The Delimitation of Urban Growth Boundaries Using the CLUE-S Land-Use Change Model: Study on Xinzhuang Town, Changshu City, China," Sustainability, MDPI, vol. 8(11), pages 1-16, November.
    13. Chaofeng Shao & Xiaogang Tian & Yang Guan & Meiting Ju & Qiang Xie, 2013. "Development and Application of a New Grey Dynamic Hierarchy Analysis System (GDHAS) for Evaluating Urban Ecological Security," IJERPH, MDPI, vol. 10(5), pages 1-25, May.
    14. Linyu Xu & Hao Yin & Zhaoxue Li & Shun Li, 2014. "Land Ecological Security Evaluation of Guangzhou, China," IJERPH, MDPI, vol. 11(10), pages 1-22, October.
    15. Yang, Yuanyuan & Bao, Wenkai & Liu, Yansui, 2020. "Scenario simulation of land system change in the Beijing-Tianjin-Hebei region," Land Use Policy, Elsevier, vol. 96(C).
    16. Dan Yu & Dongyan Wang & Wenbo Li & Shuhan Liu & Yuanli Zhu & Wenjun Wu & Yongheng Zhou, 2018. "Decreased Landscape Ecological Security of Peri-Urban Cultivated Land Following Rapid Urbanization: An Impediment to Sustainable Agriculture," Sustainability, MDPI, vol. 10(2), pages 1-16, February.
    17. Ahmed, Khalid, 2015. "The sheer scale of China’s urban renewal and CO2 emissions: Multiple structural breaks, long-run relationship and short-run dynamics," MPRA Paper 71035, University Library of Munich, Germany.
    18. Edyta Kiedrzyńska & Marcin Kiedrzyński & Maciej Zalewski, 2015. "Sustainable floodplain management for flood prevention and water quality improvement," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(2), pages 955-977, March.
    19. Isaac Sarfo & Bi Shuoben & Li Beibei & Solomon Obiri Yeboah Amankwah & Emmanuel Yeboah & John Ernest Koku & Edward Kweku Nunoo & Clement Kwang, 2022. "Spatiotemporal development of land use systems, influences and climate variability in Southwestern Ghana (1970–2020)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 9851-9883, August.
    20. Gong, Jian-zhou & Liu, Yan-sui & Xia, Bei-cheng & Zhao, Guan-wei, 2009. "Urban ecological security assessment and forecasting, based on a cellular automata model: A case study of Guangzhou, China," Ecological Modelling, Elsevier, vol. 220(24), pages 3612-3620.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:12:p:1242-:d:84054. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.