IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v104y2020i1d10.1007_s11069-020-04172-9.html
   My bibliography  Save this article

Windblown sand characteristics and hazard control measures for the Lanzhou–Wulumuqi high-speed railway

Author

Listed:
  • Long Shi

    (Southwest Jiaotong University)

  • Dongyuan Wang

    (Southwest Jiaotong University, Key Laboratory of High-Speed Railway Engineering, Ministry of Education)

  • Kaichong Li

    (Northwest Research Institute Co., Ltd. of China Railway Engineering Corporation)

Abstract

The Lanzhou–Wulumuqi high-speed railway is the first high-speed railway in China which extends through vast strong wind areas in Gobi Desert. To ensure the safety of train operation, measures to control windblown sand-related hazards were adopted. This paper presents a study on the characteristics of windblown sand related to the gale activities, the grain size distribution of wind-sand flow, and the wind-sand flow concentration, followed by introducing the corresponding measures adopted to control and mitigate the hazards caused by the windblown sand. The details of monitoring programs were also discussed, and monitoring data after completion of the project were used to evaluate the effectiveness of the measures. The four-year monitoring data revealed that most grains of sand can be intercepted by sand control measures on the upwind side of the railway, whereas insignificant grains of sand would inevitably still deposit on the railway. One-year field monitoring data show the control measures are very effective, and the average thickness of aeolian sand on the railway was reduced to 2.3 cm when using the control measures from 6.6 cm without taking any measures.

Suggested Citation

  • Long Shi & Dongyuan Wang & Kaichong Li, 2020. "Windblown sand characteristics and hazard control measures for the Lanzhou–Wulumuqi high-speed railway," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 353-374, October.
  • Handle: RePEc:spr:nathaz:v:104:y:2020:i:1:d:10.1007_s11069-020-04172-9
    DOI: 10.1007/s11069-020-04172-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-020-04172-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-020-04172-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shengbo Xie & Jianjun Qu & Yuanming Lai & Yingjun Pang, 2015. "Formation mechanism and suitable controlling pattern of sand hazards at Honglianghe River section of Qinghai–Tibet Railway," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(2), pages 855-871, March.
    2. Mani, Monto & Pillai, Rohit, 2010. "Impact of dust on solar photovoltaic (PV) performance: Research status, challenges and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3124-3131, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abbas Miri & Nick Middleton, 2022. "Long-term impacts of dust storms on transport systems in south-eastern Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 291-312, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nick Middleton & Utchang Kang, 2017. "Sand and Dust Storms: Impact Mitigation," Sustainability, MDPI, vol. 9(6), pages 1-22, June.
    2. Ma, Chao & Liu, Zhao, 2022. "Water-surface photovoltaics: Performance, utilization, and interactions with water eco-environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Saidan, Motasem & Albaali, Abdul Ghani & Alasis, Emil & Kaldellis, John K., 2016. "Experimental study on the effect of dust deposition on solar photovoltaic panels in desert environment," Renewable Energy, Elsevier, vol. 92(C), pages 499-505.
    4. Mostafa. F. Shaaban & Amal Alarif & Mohamed Mokhtar & Usman Tariq & Ahmed H. Osman & A. R. Al-Ali, 2020. "A New Data-Based Dust Estimation Unit for PV Panels," Energies, MDPI, vol. 13(14), pages 1-17, July.
    5. Ilse, Klemens K. & Figgis, Benjamin W. & Naumann, Volker & Hagendorf, Christian & Bagdahn, Jörg, 2018. "Fundamentals of soiling processes on photovoltaic modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 239-254.
    6. Huang, Pengluan & Hu, Guoqiang & Zhao, Xiaodong & Lu, Luyi & Ding, Honggang & Li, Jianlan, 2022. "Effect of organics on the adhesion of dust to PV panel surfaces under condensation," Energy, Elsevier, vol. 261(PB).
    7. Picotti, G. & Borghesani, P. & Cholette, M.E. & Manzolini, G., 2018. "Soiling of solar collectors – Modelling approaches for airborne dust and its interactions with surfaces," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2343-2357.
    8. Belqasem Aljafari & Siva Rama Krishna Madeti & Priya Ranjan Satpathy & Sudhakar Babu Thanikanti & Bamidele Victor Ayodele, 2022. "Automatic Monitoring System for Online Module-Level Fault Detection in Grid-Tied Photovoltaic Plants," Energies, MDPI, vol. 15(20), pages 1-28, October.
    9. Deb, Dipankar & Brahmbhatt, Nisarg L., 2018. "Review of yield increase of solar panels through soiling prevention, and a proposed water-free automated cleaning solution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3306-3313.
    10. Chanchangi, Yusuf N. & Ghosh, Aritra & Micheli, Leonardo & Fernández, Eduardo F. & Sundaram, Senthilarasu & Mallick, Tapas K., 2022. "Soiling mapping through optical losses for Nigeria," Renewable Energy, Elsevier, vol. 197(C), pages 995-1008.
    11. Bianchini, Augusto & Gambuti, Michele & Pellegrini, Marco & Saccani, Cesare, 2016. "Performance analysis and economic assessment of different photovoltaic technologies based on experimental measurements," Renewable Energy, Elsevier, vol. 85(C), pages 1-11.
    12. Conceição, Ricardo & González-Aguilar, José & Merrouni, Ahmed Alami & Romero, Manuel, 2022. "Soiling effect in solar energy conversion systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    13. Figgis, Benjamin & Ennaoui, Ahmed & Ahzi, Said & Rémond, Yves, 2017. "Review of PV soiling particle mechanics in desert environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 872-881.
    14. Khaled M. Alawasa & Rashid S. AlAbri & Amer S. Al-Hinai & Mohammed H. Albadi & Abdullah H. Al-Badi, 2021. "Experimental Study on the Effect of Dust Deposition on a Car Park Photovoltaic System with Different Cleaning Cycles," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    15. Erdenedavaa, Purevdalai & Akisawa, Atsushi & Adiyabat, Amarbayar & Otgonjanchiv, Erdenesuvd, 2019. "Observation and modeling of dust deposition on glass tube of evacuated solar thermal collectors in Mongolia," Renewable Energy, Elsevier, vol. 130(C), pages 613-621.
    16. Kumar, Manish & Kumar, Arun, 2017. "Performance assessment and degradation analysis of solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 554-587.
    17. Pillai, Rohitkumar & Aaditya, Gayathri & Mani, Monto & Ramamurthy, Praveen, 2014. "Cell (module) temperature regulated performance of a building integrated photovoltaic system in tropical conditions," Renewable Energy, Elsevier, vol. 72(C), pages 140-148.
    18. Muñoz-García, Miguel-Ángel & Fouris, Tom & Pilat, Eric, 2021. "Analysis of the soiling effect under different conditions on different photovoltaic glasses and cells using an indoor soiling chamber," Renewable Energy, Elsevier, vol. 163(C), pages 1560-1568.
    19. Ramez Abdallah & Adel Juaidi & Salameh Abdel-Fattah & Mahmoud Qadi & Montaser Shadid & Aiman Albatayneh & Hüseyin Çamur & Amos García-Cruz & Francisco Manzano-Agugliaro, 2022. "The Effects of Soiling and Frequency of Optimal Cleaning of PV Panels in Palestine," Energies, MDPI, vol. 15(12), pages 1-18, June.
    20. Karim Menoufi, 2017. "Dust Accumulation on the Surface of Photovoltaic Panels: Introducing the Photovoltaic Soiling Index (PVSI)," Sustainability, MDPI, vol. 9(6), pages 1-12, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:104:y:2020:i:1:d:10.1007_s11069-020-04172-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.