IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v25y2023i1d10.1007_s11009-023-09984-3.html
   My bibliography  Save this article

Joint Reliability of Two Consecutive-(1, l) or (2, k)-out-of-(2, n): F Type Systems and Its Application in Smart Street Light Deployment

Author

Listed:
  • Jingwen Lu

    (Beijing University of Chemical Technology)

  • He Yi

    (Beijing University of Chemical Technology)

  • Xiang Li

    (Beijing University of Chemical Technology)

  • Narayanaswamy Balakrishnan

    (McMaster University)

Abstract

To investigate some complex practical systems, such as a smart street light system composed of symmetrically deployed lighting and sensing equipment on both sides of a road segment, two consecutive-(1,l) or (2,k)-out-of-(2,n): F type systems that share components are quite useful and are therefore studied in this paper. The joint reliability of the two systems is presented by using the finite Markov chain imbedding approach (FMCIA), which also presents a new computational method for joint signatures of such systems. Compared to the direct method, the new method is not only computationally more efficient, but also presents a unified mathematical form. Finally, some numerical examples are presented to show the computational process, and some further applications and extensions of the models and the methods developed here are mentioned.

Suggested Citation

  • Jingwen Lu & He Yi & Xiang Li & Narayanaswamy Balakrishnan, 2023. "Joint Reliability of Two Consecutive-(1, l) or (2, k)-out-of-(2, n): F Type Systems and Its Application in Smart Street Light Deployment," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-26, March.
  • Handle: RePEc:spr:metcap:v:25:y:2023:i:1:d:10.1007_s11009-023-09984-3
    DOI: 10.1007/s11009-023-09984-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-023-09984-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-023-09984-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wan-Chen Lee, 2015. "Power of Discrete Scan Statistics: a Finite Markov Chain Imbedding Approach," Methodology and Computing in Applied Probability, Springer, vol. 17(3), pages 833-841, September.
    2. Subhash Kochar & Hari Mukerjee & Francisco J. Samaniego, 1999. "The “signature” of a coherent system and its application to comparisons among systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(5), pages 507-523, August.
    3. Yin, Juan & Cui, Lirong, 2021. "Reliability for consecutive-k-out-of-n: F systems with shared components between adjacent subsystems," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    4. Yung-Ming Chang & Tung-Lung Wu, 2011. "On Average Run Lengths of Control Charts for Autocorrelated Processes," Methodology and Computing in Applied Probability, Springer, vol. 13(2), pages 419-431, June.
    5. Navarro, Jorge & Ruiz, Jose M. & Sandoval, Carlos J., 2005. "A note on comparisons among coherent systems with dependent components using signatures," Statistics & Probability Letters, Elsevier, vol. 72(2), pages 179-185, April.
    6. Füchtenhans, M. & Grosse, E. H. & Glock, C. H., 2021. "Smart lighting systems: state-of-the-art and potential applications in warehouse order picking," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 131496, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    7. Francisco J. Samaniego, 2007. "System Signatures and their Applications in Engineering Reliability," International Series in Operations Research and Management Science, Springer, number 978-0-387-71797-5, September.
    8. Mariusz Bieniek & Marco Burkschat & Tomasz Rychlik, 2020. "Comparisons of the Expectations of System and Component Lifetimes in the Failure Dependent Proportional Hazard Model," Methodology and Computing in Applied Probability, Springer, vol. 22(1), pages 173-189, March.
    9. Yin, Juan & Cui, Lirong & Sun, Yudao & Balakrishnan, Narayanaswamy, 2022. "Reliability modelling for linear and circular k-out-of-n: F systems with shared components," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    10. He Yi & Narayanaswamy Balakrishnan & Lirong Cui, 2021. "Comparisons of Multi-State Systems with Binary Components of Different Sizes," Methodology and Computing in Applied Probability, Springer, vol. 23(4), pages 1309-1321, December.
    11. Marc Füchtenhans & Eric H. Grosse & Christoph H. Glock, 2021. "Smart lighting systems: state-of-the-art and potential applications in warehouse order picking," International Journal of Production Research, Taylor & Francis Journals, vol. 59(12), pages 3817-3839, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi, He & Balakrishnan, Narayanaswamy & Li, Xiang, 2024. "Joint reliability of linear consecutive k-type systems with shared components in a zigzag structure," Reliability Engineering and System Safety, Elsevier, vol. 241(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jia, Xujie & Shen, Jingyuan & Xu, Fanqi & Ma, Ruihong & Song, Xueying, 2019. "Modular decomposition signature for systems with sequential failure effect," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 435-444.
    2. Serkan Eryilmaz, 2014. "A new look at dynamic behavior of binary coherent system from a state-level perspective," Annals of Operations Research, Springer, vol. 212(1), pages 115-125, January.
    3. M. Kelkin Nama & M. Asadi, 2014. "Stochastic Properties of Components in a Used Coherent System," Methodology and Computing in Applied Probability, Springer, vol. 16(3), pages 675-691, September.
    4. Markos V. Koutras & Ioannis S. Triantafyllou & Serkan Eryilmaz, 2016. "Stochastic Comparisons Between Lifetimes of Reliability Systems with Exchangeable Components," Methodology and Computing in Applied Probability, Springer, vol. 18(4), pages 1081-1095, December.
    5. Ioannis S. Triantafyllou, 2022. "Signature-Based Analysis of the Weighted- r -within-Consecutive- k -out-of- n : F Systems," Mathematics, MDPI, vol. 10(15), pages 1-13, July.
    6. Roy Cerqueti, 2022. "A new concept of reliability system and applications in finance," Annals of Operations Research, Springer, vol. 312(1), pages 45-64, May.
    7. Yi, He & Cui, Lirong & Balakrishnan, Narayanaswamy, 2021. "Computation of survival signatures for multi-state consecutive-k systems," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    8. He Yi & Narayanaswamy Balakrishnan & Lirong Cui, 2022. "On Dependent Multi-State Semi-Coherent Systems Based on Multi-State Joint Signature," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1717-1734, September.
    9. Mahdi Tavangar, 2014. "Some comparisons of residual life of coherent systems with exchangeable components," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(7), pages 549-556, October.
    10. Gaofeng Da & Lvyu Xia & Taizhong Hu, 2014. "On Computing Signatures of k-out-of-n Systems Consisting of Modules," Methodology and Computing in Applied Probability, Springer, vol. 16(1), pages 223-233, March.
    11. Zarezadeh, S. & Mohammadi, L. & Balakrishnan, N., 2018. "On the joint signature of several coherent systems with some shared components," European Journal of Operational Research, Elsevier, vol. 264(3), pages 1092-1100.
    12. Zhengcheng Zhang & N. Balakrishnan, 2016. "Representations of the inactivity time for coherent systems with heterogeneous components and some ordered properties," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(1), pages 113-126, January.
    13. Eryilmaz, Serkan, 2011. "The behavior of warm standby components with respect to a coherent system," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1319-1325, August.
    14. Serkan Eryilmaz & Markos V. Koutras & Ioannis S. Triantafyllou, 2011. "Signature based analysis of m‐Consecutive‐k‐out‐of‐n: F systems with exchangeable components," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(4), pages 344-354, June.
    15. Weiyong Ding & Rui Fang & Peng Zhao, 2017. "Relative Aging of Coherent Systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(4), pages 345-354, June.
    16. Burgos, Diana & Ivanov, Dmitry, 2021. "Food retail supply chain resilience and the COVID-19 pandemic: A digital twin-based impact analysis and improvement directions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    17. Lin, Cong & Zeng, Zhaoyang & Zhou, Yan & Xu, Ming & Ren, Zhanyong, 2019. "A lower bound of reliability calculating method for lattice system with non-homogeneous components," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 36-46.
    18. Yi, He & Balakrishnan, Narayanaswamy & Li, Xiang, 2023. "Reliability of three-dimensional consecutive k-type systems," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    19. Marichal, Jean-Luc & Mathonet, Pierre & Waldhauser, Tamás, 2011. "On signature-based expressions of system reliability," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1410-1416, November.
    20. Hon Ng & Jorge Navarro & Narayanaswamy Balakrishnan, 2012. "Parametric inference from system lifetime data under a proportional hazard rate model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(3), pages 367-388, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:25:y:2023:i:1:d:10.1007_s11009-023-09984-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.