IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v24y2022i2d10.1007_s11009-022-09950-5.html
   My bibliography  Save this article

Analysis of IBNR Liabilities with Interevent Times Depending on Claim Counts

Author

Listed:
  • Daniel J. Geiger

    (Missouri University of Science and Technology)

  • Akim Adekpedjou

    (Missouri University of Science and Technology)

Abstract

We extend a recently proposed stochastic loss reserving model for liabilities from incurred but not reported (IBNR) micro-level claims. We propose viewing the number of claims from an event as a measure of catastrophic severity. This view covers catastrophes with arbitrarily many classes of magnitude. Our Markovian model allows the time between disasters to depend on the previous event’s level of severity. Simultaneously, we let the discount rate vary in the same manner. First, we find the moments of IBNR liabilities in our model. Then, we permit a later time horizon for IBNR claims when considered jointly with incurred and reported claims.

Suggested Citation

  • Daniel J. Geiger & Akim Adekpedjou, 2022. "Analysis of IBNR Liabilities with Interevent Times Depending on Claim Counts," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 815-829, June.
  • Handle: RePEc:spr:metcap:v:24:y:2022:i:2:d:10.1007_s11009-022-09950-5
    DOI: 10.1007/s11009-022-09950-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-022-09950-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-022-09950-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ihsan Chaoubi & Camille Besse & H'el`ene Cossette & Marie-Pier C^ot'e, 2022. "Micro-level Reserving for General Insurance Claims using a Long Short-Term Memory Network," Papers 2201.13267, arXiv.org.
    2. Albrecher, Hansjorg & Boxma, Onno J., 2004. "A ruin model with dependence between claim sizes and claim intervals," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 245-254, October.
    3. Avanzi, Benjamin & Taylor, Greg & Wong, Bernard & Yang, Xinda, 2021. "On the modelling of multivariate counts with Cox processes and dependent shot noise intensities," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 9-24.
    4. Francis Duval & Mathieu Pigeon, 2019. "Individual Loss Reserving Using a Gradient Boosting-Based Approach," Risks, MDPI, vol. 7(3), pages 1-18, July.
    5. Lindholm, Mathias & Zakrisson, Henning, 2022. "A Collective Reserving Model With Claim Openness," ASTIN Bulletin, Cambridge University Press, vol. 52(1), pages 117-143, January.
    6. Leveille, Ghislain & Garrido, Jose, 2001. "Moments of compound renewal sums with discounted claims," Insurance: Mathematics and Economics, Elsevier, vol. 28(2), pages 217-231, April.
    7. Wahl, Felix & Lindholm, Mathias & Verrall, Richard, 2019. "The collective reserving model," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 34-50.
    8. Greg Taylor, 2019. "Loss Reserving Models: Granular and Machine Learning Forms," Risks, MDPI, vol. 7(3), pages 1-18, July.
    9. Yanez, Juan Sebastian & Pigeon, Mathieu, 2021. "Micro-level parametric duration-frequency-severity modeling for outstanding claim payments," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 106-119.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giuseppe Vetrugno & Federica Foti & Vincenzo M. Grassi & Fabio De-Giorgio & Andrea Cambieri & Renato Ghisellini & Francesco Clemente & Luca Marchese & Giuseppe Sabatelli & Giuseppe Delogu & Paola Frat, 2022. "Malpractice Claims and Incident Reporting: Two Faces of the Same Coin?," IJERPH, MDPI, vol. 19(23), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Greg Taylor, 2019. "Risks Special Issue on “Granular Models and Machine Learning Models”," Risks, MDPI, vol. 8(1), pages 1-2, December.
    2. Ihsan Chaoubi & Camille Besse & H'el`ene Cossette & Marie-Pier C^ot'e, 2022. "Micro-level Reserving for General Insurance Claims using a Long Short-Term Memory Network," Papers 2201.13267, arXiv.org.
    3. Christopher Blier-Wong & Hélène Cossette & Luc Lamontagne & Etienne Marceau, 2020. "Machine Learning in P&C Insurance: A Review for Pricing and Reserving," Risks, MDPI, vol. 9(1), pages 1-26, December.
    4. Lu Xiong & Vajira Manathunga & Jiyao Luo & Nicholas Dennison & Ruicheng Zhang & Zhenhai Xiang, 2023. "AutoReserve: A Web-Based Tool for Personal Auto Insurance Loss Reserving with Classical and Machine Learning Methods," Risks, MDPI, vol. 11(7), pages 1-17, July.
    5. Woo, Jae-Kyung & Cheung, Eric C.K., 2013. "A note on discounted compound renewal sums under dependency," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 170-179.
    6. Siti Norafidah Mohd Ramli & Jiwook Jang, 2014. "Neumann Series on the Recursive Moments of Copula-Dependent Aggregate Discounted Claims," Risks, MDPI, vol. 2(2), pages 1-16, May.
    7. He Liu & Zhenhua Bao, 2015. "On a Discrete Interaction Risk Model with Delayed Claims," JRFM, MDPI, vol. 8(4), pages 1-14, September.
    8. Zhang, Zhehao, 2018. "Renewal sums under mixtures of exponentials," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 281-301.
    9. Swishchuk, Anatoliy & Zagst, Rudi & Zeller, Gabriela, 2021. "Hawkes processes in insurance: Risk model, application to empirical data and optimal investment," Insurance: Mathematics and Economics, Elsevier, vol. 101(PA), pages 107-124.
    10. Ambagaspitiya, Rohana S., 2009. "Ultimate ruin probability in the Sparre Andersen model with dependent claim sizes and claim occurrence times," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 464-472, June.
    11. Michel Denuit & Yang Lu, 2021. "Wishart‐gamma random effects models with applications to nonlife insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(2), pages 443-481, June.
    12. Cheung, Eric C.K., 2013. "Moments of discounted aggregate claim costs until ruin in a Sparre Andersen risk model with general interclaim times," Insurance: Mathematics and Economics, Elsevier, vol. 53(2), pages 343-354.
    13. Yanez, Juan Sebastian & Pigeon, Mathieu, 2021. "Micro-level parametric duration-frequency-severity modeling for outstanding claim payments," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 106-119.
    14. Cossette, Hélène & Landriault, David & Marceau, Etienne & Moutanabbir, Khouzeima, 2012. "Analysis of the discounted sum of ascending ladder heights," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 393-401.
    15. Franck Adékambi & Kokou Essiomle, 2021. "Asymptotic Tail Probability of the Discounted Aggregate Claims under Homogeneous, Non-Homogeneous and Mixed Poisson Risk Model," Risks, MDPI, vol. 9(7), pages 1-22, June.
    16. Søren Asmussen & Romain Biard, 2011. "Ruin probabilities for a regenerative Poisson gap generated risk process," Post-Print hal-00569254, HAL.
    17. Marri, Fouad & Furman, Edward, 2012. "Pricing compound Poisson processes with the Farlie–Gumbel–Morgenstern dependence structure," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 151-157.
    18. Stephan M. Bischofberger, 2020. "In-Sample Hazard Forecasting Based on Survival Models with Operational Time," Risks, MDPI, vol. 8(1), pages 1-17, January.
    19. Ya Fang Wang & José Garrido & Ghislain Léveillé, 2018. "The Distribution of Discounted Compound PH–Renewal Processes," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 69-96, March.
    20. Dutang, C. & Lefèvre, C. & Loisel, S., 2013. "On an asymptotic rule A+B/u for ultimate ruin probabilities under dependence by mixing," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 774-785.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:24:y:2022:i:2:d:10.1007_s11009-022-09950-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.