IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v22y2020i4d10.1007_s11009-019-09759-9.html
   My bibliography  Save this article

A Stochastic Single Vehicle Routing Problem with a Predefined Sequence of Customers and Collection of Two Similar Materials

Author

Listed:
  • Epaminondas G. Kyriakidis

    (Athens University of Economics and Business)

  • Theodosis D. Dimitrakos

    (University of the Aegean)

  • Constantinos C. Karamatsoukis

    (Hellenic Military Academy)

Abstract

We suppose that a vehicle visits N ordered customers in order to collect from them two similar but not identical materials. The actual quantity and the actual type of material that each customer possesses become known only when the vehicle arrives at the customer’s location. It is assumed that the vehicle has two compartments. We name these compartments, Compartment 1 and Compartment 2. It is assumed that Compartment 1 is suitable for loading Material 1 and Compartment 2 is suitable for loading Material 2. However it is permitted to load items of Material 1 into Compartment 2 and items of Material 2 into Compartment 1. These actions cause extra costs that are due to extra labor. It is permissible for the vehicle to interrupt its route and go to the depot to unload the items of both materials. The costs for travelling from each customer to the next one and the costs for travelling from each customer to the depot are known. The objective is to find the routing strategy that minimizes the total expected cost among all possible strategies for servicing all customers. A dynamic programming algorithm is designed for the determination of the routing strategy that minimizes the total expected cost among all possible strategies. The structure of optimal routing strategy is characterized by a set of critical numbers for each customer.

Suggested Citation

  • Epaminondas G. Kyriakidis & Theodosis D. Dimitrakos & Constantinos C. Karamatsoukis, 2020. "A Stochastic Single Vehicle Routing Problem with a Predefined Sequence of Customers and Collection of Two Similar Materials," Methodology and Computing in Applied Probability, Springer, vol. 22(4), pages 1559-1582, December.
  • Handle: RePEc:spr:metcap:v:22:y:2020:i:4:d:10.1007_s11009-019-09759-9
    DOI: 10.1007/s11009-019-09759-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-019-09759-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-019-09759-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gendreau, Michel & Laporte, Gilbert & Seguin, Rene, 1996. "Stochastic vehicle routing," European Journal of Operational Research, Elsevier, vol. 88(1), pages 3-12, January.
    2. Pandelis, D.G. & Kyriakidis, E.G. & Dimitrakos, T.D., 2012. "Single vehicle routing problems with a predefined customer sequence, compartmentalized load and stochastic demands," European Journal of Operational Research, Elsevier, vol. 217(2), pages 324-332.
    3. Dimitrakos, T.D. & Kyriakidis, E.G., 2015. "A single vehicle routing problem with pickups and deliveries, continuous random demands and predefined customer order," European Journal of Operational Research, Elsevier, vol. 244(3), pages 990-993.
    4. Kyriakidis, Epaminondas G. & Dimitrakos, Theodosis D. & Karamatsoukis, Constantinos C., 2019. "Optimal delivery of two similar products to N ordered customers with product preferences," International Journal of Production Economics, Elsevier, vol. 209(C), pages 194-204.
    5. Elgesem, Aurora Smith & Skogen, Eline Sophie & Wang, Xin & Fagerholt, Kjetil, 2018. "A traveling salesman problem with pickups and deliveries and stochastic travel times: An application from chemical shipping," European Journal of Operational Research, Elsevier, vol. 269(3), pages 844-859.
    6. Jiang, J. & Ng, K.M. & Teo, K.M., 2016. "Satisficing measure approach for vehicle routing problem with time windows under uncertaintyAuthor-Name: Nguyen, V.A," European Journal of Operational Research, Elsevier, vol. 248(2), pages 404-414.
    7. Zhang, Junlong & Lam, William H.K. & Chen, Bi Yu, 2016. "On-time delivery probabilistic models for the vehicle routing problem with stochastic demands and time windows," European Journal of Operational Research, Elsevier, vol. 249(1), pages 144-154.
    8. Minis, I. & Tatarakis, A., 2011. "Stochastic single vehicle routing problem with delivery and pick up and a predefined customer sequence," European Journal of Operational Research, Elsevier, vol. 213(1), pages 37-51, August.
    9. Pillac, Victor & Gendreau, Michel & Guéret, Christelle & Medaglia, Andrés L., 2013. "A review of dynamic vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 225(1), pages 1-11.
    10. G. B. Dantzig & J. H. Ramser, 1959. "The Truck Dispatching Problem," Management Science, INFORMS, vol. 6(1), pages 80-91, October.
    11. Ulrike Ritzinger & Jakob Puchinger & Richard F. Hartl, 2016. "A survey on dynamic and stochastic vehicle routing problems," International Journal of Production Research, Taylor & Francis Journals, vol. 54(1), pages 215-231, January.
    12. Haugland, Dag & Ho, Sin C. & Laporte, Gilbert, 2007. "Designing delivery districts for the vehicle routing problem with stochastic demands," European Journal of Operational Research, Elsevier, vol. 180(3), pages 997-1010, August.
    13. Wen-Huei Yang & Kamlesh Mathur & Ronald H. Ballou, 2000. "Stochastic Vehicle Routing Problem with Restocking," Transportation Science, INFORMS, vol. 34(1), pages 99-112, February.
    14. Tsirimpas, P. & Tatarakis, A. & Minis, I. & Kyriakidis, E.G., 2008. "Single vehicle routing with a predefined customer sequence and multiple depot returns," European Journal of Operational Research, Elsevier, vol. 187(2), pages 483-495, June.
    15. Tatarakis, A. & Minis, I., 2009. "Stochastic single vehicle routing with a predefined customer sequence and multiple depot returns," European Journal of Operational Research, Elsevier, vol. 197(2), pages 557-571, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kyriakidis, Epaminondas G. & Dimitrakos, Theodosis D. & Karamatsoukis, Constantinos C., 2019. "Optimal delivery of two similar products to N ordered customers with product preferences," International Journal of Production Economics, Elsevier, vol. 209(C), pages 194-204.
    2. Zhang, Junlong & Lam, William H.K. & Chen, Bi Yu, 2016. "On-time delivery probabilistic models for the vehicle routing problem with stochastic demands and time windows," European Journal of Operational Research, Elsevier, vol. 249(1), pages 144-154.
    3. Pandelis, D.G. & Karamatsoukis, C.C. & Kyriakidis, E.G., 2013. "Finite and infinite-horizon single vehicle routing problems with a predefined customer sequence and pickup and delivery," European Journal of Operational Research, Elsevier, vol. 231(3), pages 577-586.
    4. Jorge Oyola & Halvard Arntzen & David L. Woodruff, 2017. "The stochastic vehicle routing problem, a literature review, Part II: solution methods," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 349-388, December.
    5. Florio, Alexandre M. & Hartl, Richard F. & Minner, Stefan, 2020. "Optimal a priori tour and restocking policy for the single-vehicle routing problem with stochastic demands," European Journal of Operational Research, Elsevier, vol. 285(1), pages 172-182.
    6. Minis, I. & Tatarakis, A., 2011. "Stochastic single vehicle routing problem with delivery and pick up and a predefined customer sequence," European Journal of Operational Research, Elsevier, vol. 213(1), pages 37-51, August.
    7. Dimitrakos, T.D. & Kyriakidis, E.G., 2015. "A single vehicle routing problem with pickups and deliveries, continuous random demands and predefined customer order," European Journal of Operational Research, Elsevier, vol. 244(3), pages 990-993.
    8. Jorge Oyola & Halvard Arntzen & David L. Woodruff, 2018. "The stochastic vehicle routing problem, a literature review, part I: models," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 7(3), pages 193-221, September.
    9. Justin C. Goodson & Barrett W. Thomas & Jeffrey W. Ohlmann, 2016. "Restocking-Based Rollout Policies for the Vehicle Routing Problem with Stochastic Demand and Duration Limits," Transportation Science, INFORMS, vol. 50(2), pages 591-607, May.
    10. Zhu, Lin & Sheu, Jiuh-Biing, 2018. "Failure-specific cooperative recourse strategy for simultaneous pickup and delivery problem with stochastic demands," European Journal of Operational Research, Elsevier, vol. 271(3), pages 896-912.
    11. Pandelis, D.G. & Kyriakidis, E.G. & Dimitrakos, T.D., 2012. "Single vehicle routing problems with a predefined customer sequence, compartmentalized load and stochastic demands," European Journal of Operational Research, Elsevier, vol. 217(2), pages 324-332.
    12. F. Hooshmand Khaligh & S.A. MirHassani, 2016. "A mathematical model for vehicle routing problem under endogenous uncertainty," International Journal of Production Research, Taylor & Francis Journals, vol. 54(2), pages 579-590, January.
    13. Jin, Ming & Li, Gang & Cheng, T.C.E., 2018. "Buy online and pick up in-store: Design of the service area," European Journal of Operational Research, Elsevier, vol. 268(2), pages 613-623.
    14. Tatarakis, A. & Minis, I., 2009. "Stochastic single vehicle routing with a predefined customer sequence and multiple depot returns," European Journal of Operational Research, Elsevier, vol. 197(2), pages 557-571, September.
    15. Briseida Sarasola & Karl Doerner & Verena Schmid & Enrique Alba, 2016. "Variable neighborhood search for the stochastic and dynamic vehicle routing problem," Annals of Operations Research, Springer, vol. 236(2), pages 425-461, January.
    16. Nikolaus Furian & Michael O’Sullivan & Cameron Walker & Eranda Çela, 2021. "A machine learning-based branch and price algorithm for a sampled vehicle routing problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(3), pages 693-732, September.
    17. Saint-Guillain, Michael & Paquay, Célia & Limbourg, Sabine, 2021. "Time-dependent stochastic vehicle routing problem with random requests: Application to online police patrol management in Brussels," European Journal of Operational Research, Elsevier, vol. 292(3), pages 869-885.
    18. Briseida Sarasola & Karl F. Doerner & Verena Schmid & Enrique Alba, 2016. "Variable neighborhood search for the stochastic and dynamic vehicle routing problem," Annals of Operations Research, Springer, vol. 236(2), pages 425-461, January.
    19. Bertazzi, Luca & Secomandi, Nicola, 2018. "Faster rollout search for the vehicle routing problem with stochastic demands and restocking," European Journal of Operational Research, Elsevier, vol. 270(2), pages 487-497.
    20. Walter Rei & Michel Gendreau & Patrick Soriano, 2010. "A Hybrid Monte Carlo Local Branching Algorithm for the Single Vehicle Routing Problem with Stochastic Demands," Transportation Science, INFORMS, vol. 44(1), pages 136-146, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:22:y:2020:i:4:d:10.1007_s11009-019-09759-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.