IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v88y2018i2d10.1007_s00186-018-0637-1.html
   My bibliography  Save this article

Risk management with multiple VaR constraints

Author

Listed:
  • An Chen

    (Universität Ulm)

  • Thai Nguyen

    (Universität Ulm
    University of Economics HCM City)

  • Mitja Stadje

    (Universität Ulm)

Abstract

We study a utility maximization problem under multiple Value-at-Risk (VaR)-type constraints. The optimization framework is particularly important for financial institutions which have to follow short-time VaR-type regulations under some realistic regulatory frameworks like Solvency II, but need to serve long-term liabilities. Deriving closed-form solutions, we show that risk management using multiple VaR constraints is more useful for loss prevention at intertemporal time instances compared with the well-known result of the one-VaR problem in Basak and Shapiro (Rev Financ Stud 14:371–405, 2001), confirming the numerical analysis of Shi and Werker (J Bank Finance 36(12):3227–3238, 2012). In addition, the multiple-VaR solution at maturity on average dominates the one-VaR solution in a wide range of intermediate market scenarios, but performs worse in good and very bad market scenarios. The range of these very bad market scenarios is however rather limited. Finally, we show that it is preferable to reach a fixed terminal state through insured intertemporal states rather than through extreme up and down movements, showing that a multiple-VaR framework induces a preference for less volatility.

Suggested Citation

  • An Chen & Thai Nguyen & Mitja Stadje, 2018. "Risk management with multiple VaR constraints," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 88(2), pages 297-337, October.
  • Handle: RePEc:spr:mathme:v:88:y:2018:i:2:d:10.1007_s00186-018-0637-1
    DOI: 10.1007/s00186-018-0637-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00186-018-0637-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00186-018-0637-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yiu, K. F. C., 2004. "Optimal portfolios under a value-at-risk constraint," Journal of Economic Dynamics and Control, Elsevier, vol. 28(7), pages 1317-1334, April.
    2. Leonard C. MacLean & Yonggan Zhao & William T. Ziemba, 2016. "Optimal capital growth with convex shortfall penalties," Quantitative Finance, Taylor & Francis Journals, vol. 16(1), pages 101-117, January.
    3. Phelim Boyle & Weidong Tian, 2007. "Portfolio Management With Constraints," Mathematical Finance, Wiley Blackwell, vol. 17(3), pages 319-343, July.
    4. Xu, Liang & Gao, Chunyan & Kou, Gang & Liu, Qinjun, 2017. "Comonotonic approximation to periodic investment problems under stochastic drift," European Journal of Operational Research, Elsevier, vol. 262(1), pages 251-261.
    5. Basak, Suleyman & Shapiro, Alexander, 2001. "Value-at-Risk-Based Risk Management: Optimal Policies and Asset Prices," Review of Financial Studies, Society for Financial Studies, vol. 14(2), pages 371-405.
    6. Santos, André A.P. & Nogales, Francisco J. & Ruiz, Esther & Dijk, Dick Van, 2012. "Optimal portfolios with minimum capital requirements," Journal of Banking & Finance, Elsevier, vol. 36(7), pages 1928-1942.
    7. Thai Nguyen & Mitja Stadje, 2018. "Optimal investment for participating insurance contracts under VaR-Regulation," Papers 1805.09068, arXiv.org, revised Jul 2019.
    8. Shi, Zhen & Werker, Bas J.M., 2012. "Short-horizon regulation for long-term investors," Journal of Banking & Finance, Elsevier, vol. 36(12), pages 3227-3238.
    9. Cuoco, Domenico, 1997. "Optimal Consumption and Equilibrium Prices with Portfolio Constraints and Stochastic Income," Journal of Economic Theory, Elsevier, vol. 72(1), pages 33-73, January.
    10. Domenico Cuoco & Hua He & Sergei Isaenko, 2008. "Optimal Dynamic Trading Strategies with Risk Limits," Operations Research, INFORMS, vol. 56(2), pages 358-368, April.
    11. Suleyman Basak & Alex Shapiro & Lucie Teplá, 2006. "Risk Management with Benchmarking," Management Science, INFORMS, vol. 52(4), pages 542-557, April.
    12. Gundel, Anne & Weber, Stefan, 2008. "Utility maximization under a shortfall risk constraint," Journal of Mathematical Economics, Elsevier, vol. 44(11), pages 1126-1151, December.
    13. Jörn Sass & Ralf Wunderlich, 2010. "Optimal portfolio policies under bounded expected loss and partial information," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 72(1), pages 25-61, August.
    14. M. Schyns & Y. Crama & G. Hübner, 2010. "Optimal selection of a portfolio of options under Value-at-Risk constraints: a scenario approach," Annals of Operations Research, Springer, vol. 181(1), pages 683-708, December.
    15. MacLean, Leonard C. & Zhao, Yonggan & Ziemba, William T., 2016. "Optimal capital growth with convex shortfall penalties," LSE Research Online Documents on Economics 65486, London School of Economics and Political Science, LSE Library.
    16. Kraft, Holger & Steffensen, Mogens, 2013. "A dynamic programming approach to constrained portfolios," European Journal of Operational Research, Elsevier, vol. 229(2), pages 453-461.
    17. Chen, An & Nguyen, Thai & Stadje, Mitja, 2018. "Optimal investment under VaR-Regulation and Minimum Insurance," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 194-209.
    18. Grossman, Sanford J & Zhou, Zhongquan, 1996. "Equilibrium Analysis of Portfolio Insurance," Journal of Finance, American Finance Association, vol. 51(4), pages 1379-1403, September.
    19. Alexander, Gordon J. & Baptista, Alexandre M. & Yan, Shu, 2012. "When more is less: Using multiple constraints to reduce tail risk," Journal of Banking & Finance, Elsevier, vol. 36(10), pages 2693-2716.
    20. Jang, Bong-Gyu & Park, Seyoung, 2016. "Ambiguity and optimal portfolio choice with Value-at-Risk constraint," Finance Research Letters, Elsevier, vol. 18(C), pages 158-176.
    21. Cuoco, Domenico & Liu, Hong, 2006. "An analysis of VaR-based capital requirements," Journal of Financial Intermediation, Elsevier, vol. 15(3), pages 362-394, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fangyuan Zhang, 2023. "Non-concave portfolio optimization with average value-at-risk," Mathematics and Financial Economics, Springer, volume 17, number 3, June.
    2. Thai Nguyen & Mitja Stadje, 2018. "Optimal investment for participating insurance contracts under VaR-Regulation," Papers 1805.09068, arXiv.org, revised Jul 2019.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jang, Bong-Gyu & Park, Seyoung, 2016. "Ambiguity and optimal portfolio choice with Value-at-Risk constraint," Finance Research Letters, Elsevier, vol. 18(C), pages 158-176.
    2. Thai Nguyen & Mitja Stadje, 2018. "Optimal investment for participating insurance contracts under VaR-Regulation," Papers 1805.09068, arXiv.org, revised Jul 2019.
    3. Chen, An & Nguyen, Thai & Stadje, Mitja, 2018. "Optimal investment under VaR-Regulation and Minimum Insurance," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 194-209.
    4. Chen, An & Hieber, Peter & Nguyen, Thai, 2019. "Constrained non-concave utility maximization: An application to life insurance contracts with guarantees," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1119-1135.
    5. John Armstrong & Damiano Brigo & Alex S. L. Tse, 2020. "The importance of dynamic risk constraints for limited liability operators," Papers 2011.03314, arXiv.org.
    6. Alexander, Gordon J. & Baptista, Alexandre M. & Yan, Shu, 2014. "Bank regulation and international financial stability: A case against the 2006 Basel framework for controlling tail risk in trading books," Journal of International Money and Finance, Elsevier, vol. 43(C), pages 107-130.
    7. Guan, Guohui & Liang, Zongxia, 2016. "Optimal management of DC pension plan under loss aversion and Value-at-Risk constraints," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 224-237.
    8. Das, Sanjiv R. & Statman, Meir, 2013. "Options and structured products in behavioral portfolios," Journal of Economic Dynamics and Control, Elsevier, vol. 37(1), pages 137-153.
    9. Alexander, Gordon J. & Baptista, Alexandre M., 2009. "Stress testing by financial intermediaries: Implications for portfolio selection and asset pricing," Journal of Financial Intermediation, Elsevier, vol. 18(1), pages 65-92, January.
    10. Marcos Escobar-Anel & Yevhen Havrylenko & Rudi Zagst, 2022. "Value-at-Risk constrained portfolios in incomplete markets: a dynamic programming approach to Heston's model," Papers 2208.14152, arXiv.org, revised Oct 2023.
    11. An Chen & Mitja Stadje & Fangyuan Zhang, 2020. "On the equivalence between Value-at-Risk- and Expected Shortfall-based risk measures in non-concave optimization," Papers 2002.02229, arXiv.org, revised Jun 2022.
    12. Traian A. Pirvu & Gordan Žitković, 2009. "Maximizing The Growth Rate Under Risk Constraints," Mathematical Finance, Wiley Blackwell, vol. 19(3), pages 423-455, July.
    13. José Vicente & Aloísio Araújo, 2010. "Social Welfare Analysis in a Financial Economy with Risk Regulation," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 12(3), pages 561-586, June.
    14. Kraft, Holger & Steffensen, Mogens, 2013. "A dynamic programming approach to constrained portfolios," European Journal of Operational Research, Elsevier, vol. 229(2), pages 453-461.
    15. Ke Zhou & Jiangjun Gao & Duan Li & Xiangyu Cui, 2017. "Dynamic mean–VaR portfolio selection in continuous time," Quantitative Finance, Taylor & Francis Journals, vol. 17(10), pages 1631-1643, October.
    16. Alexander, Gordon J. & Baptista, Alexandre M. & Yan, Shu, 2012. "When more is less: Using multiple constraints to reduce tail risk," Journal of Banking & Finance, Elsevier, vol. 36(10), pages 2693-2716.
    17. Marcos Escobar-Anel & Michel Kschonnek & Rudi Zagst, 2022. "Portfolio optimization: not necessarily concave utility and constraints on wealth and allocation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(1), pages 101-140, February.
    18. Traian A. Pirvu & Gordan Zitkovic, 2007. "Maximizing the Growth Rate under Risk Constraints," Papers 0706.0480, arXiv.org.
    19. Kraft, Holger & Steffensen, Mogens, 2012. "A dynamic programming approach to constrained portfolios," CFS Working Paper Series 2012/07, Center for Financial Studies (CFS).
    20. Boyle, Phelim & Tian, Weidong, 2008. "The design of equity-indexed annuities," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 303-315, December.

    More about this item

    Keywords

    Value at Risk; Optimal portfolio; Multiple risk constraints; Risk management; Solvency II regulation;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G18 - Financial Economics - - General Financial Markets - - - Government Policy and Regulation
    • G31 - Financial Economics - - Corporate Finance and Governance - - - Capital Budgeting; Fixed Investment and Inventory Studies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:88:y:2018:i:2:d:10.1007_s00186-018-0637-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.