IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v25y2020i6d10.1007_s11027-019-09910-4.html
   My bibliography  Save this article

Improving African bean productivity in a changing global environment

Author

Listed:
  • Gebel Taba-Morales

    (Departamento de Geografía)

  • Glenn Hyman

    (Spatial Informatics Group)

  • Jorge Rubiano Mejía

    (Departamento de Geografía)

  • Fabio Castro-Llanos

    (Centro Internacional de Agricultura Tropical (CIAT))

  • Stephen Beebe

    (Centro Internacional de Agricultura Tropical (CIAT))

  • Jean Claude Rubyogo

    (Centro Internacional de Agricultura Tropical (CIAT))

  • Enid Katungi

    (Centro Internacional de Agricultura Tropical (CIAT))

  • Robin Buruchara

    (Centro Internacional de Agricultura Tropical (CIAT))

Abstract

Common bean (Phaseolus vulgaris) cultivation delivers income to farmers and nutrition to consumers in sub-Saharan Africa. With a growing population and land scarcity, there will be greater pressure to intensify common bean and other crops in the region. However, high temperatures and increased drought may reduce common bean yields in Africa. Climate change impacts on climbing beans are not yet clear. Therefore, the objective of this study was to evaluate the expected impact of climate change on suitability for climbing bean cultivation. The study identifies areas suitable to cultivate climbing beans in sub-Saharan Africa, taking into account the present climate as well as the predicted future climate. The analysis compares and evaluates the performance of two ecological niche models—Ecocrop and MaxEnt—under future climatic conditions, according to global circulation models of the last Intergovernmental Panel on Climate Change (IPCC) report. The Ecocrop model results showed a wide common bean distribution in comparison with those of MaxEnt, which showed a better approximation to the current distribution of climbing beans. The MaxEnt model performed well as judged by validation statistics and comparison with climbing bean production data. Overall, the models project climate change to decrease the suitability of climbing beans in Africa. The results suggest that rising temperatures and variable rainfall will most severely affect bean production in countries of southern Africa such as Zambia, Zimbabwe, Malawi, and Mozambique. In other parts of the tropics, climbing bean cultivation may suffer rising temperatures and more variable rainfall at higher latitudes, as opposed to areas near the equator. The study suggests where agricultural specialists can promote climbing beans in Africa and other regions of the world, where they are highly suitable and not yet widely cultivated. Researchers can improve studies such as this one for beans and other crops by developing more detailed calibration and validation data sets for modeling efforts.

Suggested Citation

  • Gebel Taba-Morales & Glenn Hyman & Jorge Rubiano Mejía & Fabio Castro-Llanos & Stephen Beebe & Jean Claude Rubyogo & Enid Katungi & Robin Buruchara, 2020. "Improving African bean productivity in a changing global environment," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(6), pages 1013-1029, August.
  • Handle: RePEc:spr:masfgc:v:25:y:2020:i:6:d:10.1007_s11027-019-09910-4
    DOI: 10.1007/s11027-019-09910-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11027-019-09910-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11027-019-09910-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Larochelle, Catherine & Alwang, Jeffrey Roger, 2014. "Impacts of Improved Bean Varieties on Food Security in Rwanda," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170567, Agricultural and Applied Economics Association.
    2. Alessia Cogato & Franco Meggio & Massimiliano De Antoni Migliorati & Francesco Marinello, 2019. "Extreme Weather Events in Agriculture: A Systematic Review," Sustainability, MDPI, vol. 11(9), pages 1-18, May.
    3. Ana Maria Loboguerrero & Bruce M. Campbell & Peter J. M. Cooper & James W. Hansen & Todd Rosenstock & Eva Wollenberg, 2019. "Food and Earth Systems: Priorities for Climate Change Adaptation and Mitigation for Agriculture and Food Systems," Sustainability, MDPI, vol. 11(5), pages 1-26, March.
    4. Amsalu Woldie Yalew & Georg Hirte & Hermann Lotze-Campen & Stefan Tscharaktschiew, 2018. "Climate Change, Agriculture, and Economic Development in Ethiopia," Sustainability, MDPI, vol. 10(10), pages 1-23, September.
    5. Enid M. Katungi & Catherine Larochelle & Josephat R. Mugabo & Robin Buruchara, 2018. "The effect of climbing bean adoption on the welfare of smallholder common bean growers in Rwanda," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(1), pages 61-79, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kassie, Menale & Fisher, Monica & Muricho, Geoffrey & Diiro, Gracious, 2020. "Women’s empowerment boosts the gains in dietary diversity from agricultural technology adoption in rural Kenya," Food Policy, Elsevier, vol. 95(C).
    2. Cristina Keiko Yamaguchi & Stéfano Frizzo Stefenon & Ney Kassiano Ramos & Vanessa Silva dos Santos & Fernanda Forbici & Anne Carolina Rodrigues Klaar & Fernanda Cristina Silva Ferreira & Alessandra Ca, 2020. "Young People’s Perceptions about the Difficulties of Entrepreneurship and Developing Rural Properties in Family Agriculture," Sustainability, MDPI, vol. 12(21), pages 1-12, October.
    3. Peter Tangney & Claire Nettle & Beverley Clarke & Joshua Newman & Cassandra Star, 2021. "Climate security in the Indo-Pacific: a systematic review of governance challenges for enhancing regional climate resilience," Climatic Change, Springer, vol. 167(3), pages 1-30, August.
    4. Enid M. Katungi & Catherine Larochelle & Josephat R. Mugabo & Robin Buruchara, 2018. "The effect of climbing bean adoption on the welfare of smallholder common bean growers in Rwanda," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(1), pages 61-79, February.
    5. Erpeng Wang & Ning An & Zhifeng Gao & Emmanuel Kiprop & Xianhui Geng, 2020. "Consumer food stockpiling behavior and willingness to pay for food reserves in COVID-19," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(4), pages 739-747, August.
    6. Jonathan E. Barnsley & Chanjief Chandrakumar & Carlos Gonzalez-Fischer & Paul E. Eme & Bridget E. P. Bourke & Nick W. Smith & Lakshmi A. Dave & Warren C. McNabb & Harry Clark & David J. Frame & John L, 2021. "Lifetime Climate Impacts of Diet Transitions: A Novel Climate Change Accounting Perspective," Sustainability, MDPI, vol. 13(10), pages 1-18, May.
    7. Marius Mihai Micu & Toma Adrian Dinu & Gina Fintineru & Valentina Constanta Tudor & Elena Stoian & Eduard Alexandru Dumitru & Paula Stoicea & Adina Iorga, 2022. "Climate Change—Between “Myth and Truth” in Romanian Farmers’ Perception," Sustainability, MDPI, vol. 14(14), pages 1-21, July.
    8. Catherine Larochelle & Jeffrey Alwang, 2022. "Impacts of Improved Bean Varieties Adoption on Dietary Diversity and Food Security in Rwanda," The European Journal of Development Research, Palgrave Macmillan;European Association of Development Research and Training Institutes (EADI), vol. 34(2), pages 1144-1166, April.
    9. Daregot Berihun & Passel Steven, 2022. "Climate variability and macroeconomic output in Ethiopia: the analysis of nexus and impact via asymmetric autoregressive distributive lag cointegration method," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 4064-4087, March.
    10. J. C. Ryan & S. Mellish & B. R. Busque & C. A. Litchfield, 2019. "Enhancing the impact of conservation marketing using psychology: a research agenda," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 9(4), pages 442-448, December.
    11. Abebe, Meseret Birhane & Endale, Kefyalew, 2023. "The Impact of Improved Seed Adoption on Nutrition Outcome: A Panel Endogenous Switching Regression Analysis," EfD Discussion Paper 23-1, Environment for Development, University of Gothenburg.
    12. Nuzhat Khan & Mohamad Anuar Kamaruddin & Usman Ullah Sheikh & Yusri Yusup & Muhammad Paend Bakht, 2021. "Oil Palm and Machine Learning: Reviewing One Decade of Ideas, Innovations, Applications, and Gaps," Agriculture, MDPI, vol. 11(9), pages 1-26, August.
    13. Tillie, Pascal & Louhichi, Kamel & Paloma, Sergio Gomez y, 2016. "Modelling the farm household impacts of a small irrigation program in Niger," 2016 Fifth International Conference, September 23-26, 2016, Addis Ababa, Ethiopia 249267, African Association of Agricultural Economists (AAAE).
    14. Vaiknoras, Kate A. & Larochelle, Catherine, 2018. "The Impact of Biofortified Iron Bean Adoption on Productivity, and Bean Consumption, Purchases and Sales," 2018 Annual Meeting, August 5-7, Washington, D.C. 274231, Agricultural and Applied Economics Association.
    15. Veronica Sanda Chedea & Ana-Maria Drăgulinescu & Liliana Lucia Tomoiagă & Cristina Bălăceanu & Maria Lucia Iliescu, 2021. "Climate Change and Internet of Things Technologies—Sustainable Premises of Extending the Culture of the Amurg Cultivar in Transylvania—A Use Case for Târnave Vineyard," Sustainability, MDPI, vol. 13(15), pages 1-28, July.
    16. Claudia A. Ochoa-Noriega & Juan F. Velasco-Muñoz & José A. Aznar-Sánchez & Ernesto Mesa-Vázquez, 2021. "Overview of Research on Sustainable Agriculture in Developing Countries. The Case of Mexico," Sustainability, MDPI, vol. 13(15), pages 1-20, July.
    17. Akua S. Akuffo & Kwamena K. Quagrainie, 2019. "Assessment of Household Food Security in Fish Farming Communities in Ghana," Sustainability, MDPI, vol. 11(10), pages 1-15, May.
    18. Dániel Fróna, 2024. "The state of agricultural digitalisation in Hungary," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 70(1), pages 1-12.
    19. Amuakwa-Mensah, Franklin & Amuakwa-Mensah, Salome & Klege, Rebecca Afua & Adom, Philip Kofi, 2022. "Stockpiling and food worries: Changing habits and choices in the midst of COVID-19 pandemic," Socio-Economic Planning Sciences, Elsevier, vol. 82(PA).
    20. Murekezi, Abdoul & Oparinde, Adewale & Birol, Ekin, 2017. "Consumer market segments for biofortified iron beans in Rwanda: Evidence from a hedonic testing study," Food Policy, Elsevier, vol. 66(C), pages 35-49.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:25:y:2020:i:6:d:10.1007_s11027-019-09910-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.