IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v24y2019i3d10.1007_s11027-018-9820-1.html
   My bibliography  Save this article

Adaptability of global olive cultivars to water availability under future Mediterranean climate

Author

Listed:
  • S. M. Alfieri

    (National Research Council (CNR))

  • M. Riccardi

    (National Research Council (CNR))

  • M. Menenti

    (Delft University of Technology
    Chinese Academy of Sciences)

  • A. Basile

    (National Research Council (CNR))

  • A. Bonfante

    (National Research Council (CNR))

  • F. Lorenzi

    (National Research Council (CNR))

Abstract

Adaptation to climate change is a major challenge facing the agricultural sector worldwide. Olive (Olea europaea L.) is a global, high value crop currently cultivated in 28 countries worldwide. Global data to assess the vulnerability of the crop to climate variability are scarce, and in some notable cases, such the United Nations Food and Agricutlure Organization database (FAO, 2006), qualitative assessments rather than quantitative indicators are provided. The aim of this study is to demonstrate a new approach to help overcome these constraints toward a globally applicable method to assess the adaptability of olive cultivars. The adaptability of 11 cultivars, widely used in 11 countries worldwide, was studied using a new generic approach based on the evaluation of soil hydrological regime against cultivar-specific hydrological requirements. The approach requires local data, notably on soil hydrological properties, but it is easily transferable to other countries and regions. We applied an agrohydrological model in 60 soil units to determine hydrological indicators both in a reference (1961–1990) and a future (2021–2050) climate case. We compared indicators with cultivar-specific requirements to achieve the target yield; requirements were established using experimental yield response curves. We estimated the probability of adaptation, i.e., the probability that a given cultivar attains the target yield, and we used it to evaluate the cultivar potential distribution in the study area. At the locations where soil hydrological conditions were favorable, the probabilities of adaptation of the cultivars were high in both climate cases. The results show that the area with suitable conditions for the target yield (area of adaptability) decreased under future climate for all the cultivars, with higher reduction for Frantoio and Maiatica and smaller reduction for Itrana, Nocellara, Ascolana, and Kalamata. These cultivars are currently grown in Argentina, United States (US), Australia, France, Greece, and Italy. Our results indicate also that these cultivars require higher available soil water to attain the target yield, i.e., we may expect similar vulnerability in other parts of the world. Based on these findings, we provide some specific recommendations for enrichment of global databases and for further developments of our approach, to increase its potential for global application.

Suggested Citation

  • S. M. Alfieri & M. Riccardi & M. Menenti & A. Basile & A. Bonfante & F. Lorenzi, 2019. "Adaptability of global olive cultivars to water availability under future Mediterranean climate," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(3), pages 435-466, March.
  • Handle: RePEc:spr:masfgc:v:24:y:2019:i:3:d:10.1007_s11027-018-9820-1
    DOI: 10.1007/s11027-018-9820-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11027-018-9820-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11027-018-9820-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C. Cammalleri & G. Ciraolo & M. Minacapilli & G. Rallo, 2013. "Evapotranspiration from an Olive Orchard using Remote Sensing-Based Dual Crop Coefficient Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(14), pages 4877-4895, November.
    2. Correa-Tedesco, Guillermo & Rousseaux, M. Cecilia & Searles, Peter S., 2010. "Plant growth and yield responses in olive (Olea europaea) to different irrigation levels in an arid region of Argentina," Agricultural Water Management, Elsevier, vol. 97(11), pages 1829-1837, November.
    3. Bastiaanssen, W.G.M. & Allen, R.G. & Droogers, P. & D'Urso, G. & Steduto, P., 2007. "Twenty-five years modeling irrigated and drained soils: State of the art," Agricultural Water Management, Elsevier, vol. 92(3), pages 111-125, September.
    4. Fernández, J.E. & Torres-Ruiz, J.M. & Diaz-Espejo, A. & Montero, A. & Álvarez, R. & Jiménez, M.D. & Cuerva, J. & Cuevas, M.V., 2011. "Use of maximum trunk diameter measurements to detect water stress in mature 'Arbequina' olive trees under deficit irrigation," Agricultural Water Management, Elsevier, vol. 98(12), pages 1813-1821, October.
    5. Moriondo, M. & Stefanini, F.M. & Bindi, M., 2008. "Reproduction of olive tree habitat suitability for global change impact assessment," Ecological Modelling, Elsevier, vol. 218(1), pages 95-109.
    6. F. Orlandi & H. Garcia-Mozo & A. Dhiab & C. Galán & M. Msallem & B. Romano & M. Abichou & E. Dominguez-Vilches & M. Fornaciari, 2013. "Climatic indices in the interpretation of the phenological phases of the olive in mediterranean areas during its biological cycle," Climatic Change, Springer, vol. 116(2), pages 263-284, January.
    7. Bonfante, A. & Alfieri, S.M. & Albrizio, R. & Basile, A. & De Mascellis, R. & Gambuti, A. & Giorio, P. & Langella, G. & Manna, P. & Monaco, E. & Moio, L. & Terribile, F., 2017. "Evaluation of the effects of future climate change on grape quality through a physically based model application: a case study for the Aglianico grapevine in Campania region, Italy," Agricultural Systems, Elsevier, vol. 152(C), pages 100-109.
    8. Ben-Asher, J. & van Dam, J. & Feddes, R.A. & Jhorar, R.K., 2006. "Irrigation of grapevines with saline water: II. Mathematical simulation of vine growth and yield," Agricultural Water Management, Elsevier, vol. 83(1-2), pages 22-29, May.
    9. A. J. Challinor & J. Watson & D. B. Lobell & S. M. Howden & D. R. Smith & N. Chhetri, 2014. "A meta-analysis of crop yield under climate change and adaptation," Nature Climate Change, Nature, vol. 4(4), pages 287-291, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Albrizio, R. & Puig-Sirera, À. & Sellami, M.H. & Guida, G. & Basile, A. & Bonfante, A. & Gambuti, A. & Giorio, P., 2023. "Water stress, yield, and grape quality in a hilly rainfed “Aglianico” vineyard grown in two different soils along a slope," Agricultural Water Management, Elsevier, vol. 279(C).
    2. Beatrice Monteleone & Iolanda Borzí & Brunella Bonaccorso & Mario Martina, 2023. "Quantifying crop vulnerability to weather-related extreme events and climate change through vulnerability curves," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 2761-2796, April.
    3. Cabezas, J.M. & Ruiz-Ramos, M. & Soriano, M.A. & Gabaldón-Leal, C. & Santos, C. & Lorite, I.J., 2020. "Identifying adaptation strategies to climate change for Mediterranean olive orchards using impact response surfaces," Agricultural Systems, Elsevier, vol. 185(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alcaras, L. Martín Agüero & Rousseaux, M. Cecilia & Searles, Peter S., 2016. "Responses of several soil and plant indicators to post-harvest regulated deficit irrigation in olive trees and their potential for irrigation scheduling," Agricultural Water Management, Elsevier, vol. 171(C), pages 10-20.
    2. Knowling, Matthew J. & Bennett, Bree & Ostendorf, Bertram & Westra, Seth & Walker, Rob R. & Pellegrino, Anne & Edwards, Everard J. & Collins, Cassandra & Pagay, Vinay & Grigg, Dylan, 2021. "Bridging the gap between data and decisions: A review of process-based models for viticulture," Agricultural Systems, Elsevier, vol. 193(C).
    3. Hernandez-Santana, V. & Fernández, J.E. & Cuevas, M.V. & Perez-Martin, A. & Diaz-Espejo, A., 2017. "Photosynthetic limitations by water deficit: Effect on fruit and olive oil yield, leaf area and trunk diameter and its potential use to control vegetative growth of super-high density olive orchards," Agricultural Water Management, Elsevier, vol. 184(C), pages 9-18.
    4. Chehab, Hechmi & Tekaya, Mariem & Mechri, Beligh & Jemai, Abdelmajid & Guiaa, Mohamed & Mahjoub, Zoubeir & Boujnah, Dalenda & Laamari, Salwa & Chihaoui, Badreddine & Zakhama, Houda & Hammami, Mohamed , 2017. "Effect of the Super Absorbent Polymer Stockosorb® on leaf turgor pressure, tree performance and oil quality of olive trees cv. Chemlali grown under field conditions in an arid region of Tunisia," Agricultural Water Management, Elsevier, vol. 192(C), pages 221-231.
    5. Namra Ghaffar & Bushra Noreen & Maryam Muhammad Ali & Amna Ali, 2021. "Rice Yield Estimation in Sawat Region Incorporating The Local Physio-Climatic Parameters," International Journal of Agriculture & Sustainable Development, 50sea, vol. 3(2), pages 46-50, June.
    6. Dániel Fróna & János Szenderák & Mónika Harangi-Rákos, 2019. "The Challenge of Feeding the World," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    7. Ignaciuk, Ada & Malevolti, Giulia & Scognamillo, Antonio & Sitko, Nicholas J., 2022. "Can food aid relax farmers’ constraints to adopting climate-adaptive agricultural practices? Evidence from Ethiopia, Malawi and the United Republic of Tanzania," ESA Working Papers 324073, Food and Agriculture Organization of the United Nations, Agricultural Development Economics Division (ESA).
    8. Dilshad Ahmad & Muhammad Afzal & Abdur Rauf, 2019. "Analysis of wheat farmers’ risk perceptions and attitudes: evidence from Punjab, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 95(3), pages 845-861, February.
    9. Francisco Costa & Fabien Forge & Jason Garred & João Paulo Pessoa, 2020. "Climate Change and the Distribution of Agricultural Output," Working Papers 2003E, University of Ottawa, Department of Economics.
    10. Alejandro del Pozo & Nidia Brunel-Saldias & Alejandra Engler & Samuel Ortega-Farias & Cesar Acevedo-Opazo & Gustavo A. Lobos & Roberto Jara-Rojas & Marco A. Molina-Montenegro, 2019. "Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs)," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    11. Konrad Prandecki & Edyta Gajos, 2018. "Reductin of greenhouse gases emission and sustainability: The multi-criteria approach," International Conference on Competitiveness of Agro-food and Environmental Economy Proceedings, The Bucharest University of Economic Studies, vol. 7, pages 46-54.
    12. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    13. Pérez-López, D. & Pérez-Rodríguez, J.M. & Moreno, M.M. & Prieto, M.H. & Ramírez-Santa-Pau, M. & Gijón, M.C. & Guerrero, J. & Moriana, A., 2013. "Influence of different cultivars–locations on maximum daily shrinkage indicators: Limits to the reference baseline approach," Agricultural Water Management, Elsevier, vol. 127(C), pages 31-39.
    14. Yuan, Chengfu & Feng, Shaoyuan & Huo, Zailin & Ji, Quanyi, 2019. "Effects of deficit irrigation with saline water on soil water-salt distribution and water use efficiency of maize for seed production in arid Northwest China," Agricultural Water Management, Elsevier, vol. 212(C), pages 424-432.
    15. Gil-Clavel, Sofia & Wagenblast, Thorid & Filatova, Tatiana, 2023. "Farmers’ Incremental and Transformational Climate Change Adaptation in Different Regions: A Natural Language Processing Comparative Literature Review," SocArXiv 3dp5e, Center for Open Science.
    16. Luis Santos Pereira, 2017. "Water, Agriculture and Food: Challenges and Issues," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 2985-2999, August.
    17. Sabina Thaler & Herbert Formayer & Gerhard Kubu & Miroslav Trnka & Josef Eitzinger, 2021. "Effects of Bias-Corrected Regional Climate Projections and Their Spatial Resolutions on Crop Model Results under Different Climatic and Soil Conditions in Austria," Agriculture, MDPI, vol. 11(11), pages 1-39, October.
    18. Kamdi, Prasad Jairam & Swain, Dillip Kumar & Wani, Suhas P., 2023. "Developing climate change agro-adaptation strategies through field experiments and simulation analyses for sustainable sorghum production in semi-arid tropics of India," Agricultural Water Management, Elsevier, vol. 286(C).
    19. Akpoti, Komlavi & Groen, Thomas & Dossou-Yovo, Elliott & Kabo-bah, Amos T. & Zwart, Sander J., 2022. "Climate change-induced reduction in agricultural land suitability of West-Africa's inland valley landscapes," Agricultural Systems, Elsevier, vol. 200(C).
    20. Angga Pradesha & Sherman Robinson & Mark W. Rosegrant & Nicostrato Perez & Timothy S. Thomas, 2022. "Exploring transformational adaptation strategy through agricultural policy reform in the Philippines," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(6), pages 1435-1447, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:24:y:2019:i:3:d:10.1007_s11027-018-9820-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.