IDEAS home Printed from https://ideas.repec.org/a/spr/lifeda/v30y2024i3d10.1007_s10985-024-09622-1.html
   My bibliography  Save this article

A Bayesian quantile joint modeling of multivariate longitudinal and time-to-event data

Author

Listed:
  • Damitri Kundu

    (Indian Statistical Institute)

  • Shekhar Krishnan

    (Tata Medical Center)

  • Manash Pratim Gogoi

    (Tata Medical Center)

  • Kiranmoy Das

    (Indian Statistical Institute
    Beijing Institute of Mathematical Sciences and Applications)

Abstract

Linear mixed models are traditionally used for jointly modeling (multivariate) longitudinal outcomes and event-time(s). However, when the outcomes are non-Gaussian a quantile regression model is more appropriate. In addition, in the presence of some time-varying covariates, it might be of interest to see how the effects of different covariates vary from one quantile level (of outcomes) to the other, and consequently how the event-time changes across different quantiles. For such analyses linear quantile mixed models can be used, and an efficient computational algorithm can be developed. We analyze a dataset from the Acute Lymphocytic Leukemia (ALL) maintenance study conducted by Tata Medical Center, Kolkata. In this study, the patients suffering from ALL were treated with two standard drugs (6MP and MTx) for the first two years, and three biomarkers (e.g. lymphocyte count, neutrophil count and platelet count) were longitudinally measured. After treatment the patients were followed nearly for the next three years, and the relapse-time (if any) for each patient was recorded. For this dataset we develop a Bayesian quantile joint model for the three longitudinal biomarkers and time-to-relapse. We consider an Asymmetric Laplace Distribution (ALD) for each outcome, and exploit the mixture representation of the ALD for developing a Gibbs sampler algorithm to estimate the regression coefficients. Our proposed model allows different quantile levels for different biomarkers, but still simultaneously estimates the regression coefficients corresponding to a particular quantile combination. We infer that a higher lymphocyte count accelerates the chance of a relapse while a higher neutrophil count and a higher platelet count (jointly) reduce it. Also, we infer that across (almost) all quantiles 6MP reduces the lymphocyte count, while MTx increases the neutrophil count. Simulation studies are performed to assess the effectiveness of the proposed approach.

Suggested Citation

  • Damitri Kundu & Shekhar Krishnan & Manash Pratim Gogoi & Kiranmoy Das, 2024. "A Bayesian quantile joint modeling of multivariate longitudinal and time-to-event data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 30(3), pages 680-699, July.
  • Handle: RePEc:spr:lifeda:v:30:y:2024:i:3:d:10.1007_s10985-024-09622-1
    DOI: 10.1007/s10985-024-09622-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10985-024-09622-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10985-024-09622-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hanze Zhang & Yangxin Huang, 2020. "Quantile regression-based Bayesian joint modeling analysis of longitudinal–survival data, with application to an AIDS cohort study," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(2), pages 339-368, April.
    2. Koenker, Roger, 2004. "Quantile regression for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 91(1), pages 74-89, October.
    3. Umberto Picchini & Andrea De Gaetano & Susanne Ditlevsen, 2010. "Stochastic Differential Mixed‐Effects Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(1), pages 67-90, March.
    4. Marco Alfò & Maria Francesca Marino & Maria Giovanna Ranalli & Nicola Salvati & Nikos Tzavidis, 2021. "M‐quantile regression for multivariate longitudinal data with an application to the Millennium Cohort Study," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(1), pages 122-146, January.
    5. Kiranmoy Das & Michael J. Daniels, 2014. "A semiparametric approach to simultaneous covariance estimation for bivariate sparse longitudinal data," Biometrics, The International Biometric Society, vol. 70(1), pages 33-43, March.
    6. Hemant Kulkarni & Jayabrata Biswas & Kiranmoy Das, 2019. "A joint quantile regression model for multiple longitudinal outcomes," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(4), pages 453-473, December.
    7. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    8. Jayabrata Biswas & Kiranmoy Das, 2021. "A Bayesian quantile regression approach to multivariate semi-continuous longitudinal data," Computational Statistics, Springer, vol. 36(1), pages 241-260, March.
    9. Kiranmoy Das, 2016. "A semiparametric Bayesian approach for joint modeling of longitudinal trait and event time," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(15), pages 2850-2865, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jayabrata Biswas & Kiranmoy Das, 2021. "A Bayesian quantile regression approach to multivariate semi-continuous longitudinal data," Computational Statistics, Springer, vol. 36(1), pages 241-260, March.
    2. Hemant Kulkarni & Jayabrata Biswas & Kiranmoy Das, 2019. "A joint quantile regression model for multiple longitudinal outcomes," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(4), pages 453-473, December.
    3. Priya Kedia & Damitri Kundu & Kiranmoy Das, 2023. "A Bayesian variable selection approach to longitudinal quantile regression," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(1), pages 149-168, March.
    4. Luca Merlo & Lea Petrella & Nikos Tzavidis, 2022. "Quantile mixed hidden Markov models for multivariate longitudinal data: An application to children's Strengths and Difficulties Questionnaire scores," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(2), pages 417-448, March.
    5. Ranran Chen & Mai Dao & Keying Ye & Min Wang, 2025. "Bayesian adaptive lasso quantile regression with non-ignorable missing responses," Computational Statistics, Springer, vol. 40(3), pages 1643-1682, March.
    6. Kiranmoy Das & Bhuvanesh Pareek & Sarah Brown & Pulak Ghosh, 2022. "A semi-parametric Bayesian dynamic hurdle model with an application to the health and retirement study," Computational Statistics, Springer, vol. 37(2), pages 837-863, April.
    7. Haddou, Samira, 2024. "Determinants of CDS in core and peripheral European countries: A comparative study during crisis and calm periods," The North American Journal of Economics and Finance, Elsevier, vol. 71(C).
    8. Kato, Kengo & F. Galvao, Antonio & Montes-Rojas, Gabriel V., 2012. "Asymptotics for panel quantile regression models with individual effects," Journal of Econometrics, Elsevier, vol. 170(1), pages 76-91.
    9. Dimelis, Sophia & Giotopoulos, Ioannis & Louri, Helen, 2015. "Can firms grow without credit?: evidence from the Euro Area, 2005-2011: a quantile panel analysis," LSE Research Online Documents on Economics 61157, London School of Economics and Political Science, LSE Library.
    10. Inanoglu, Hulusi & Jacobs, Michael, Jr. & Liu, Junrong & Sickles, Robin, 2015. "Analyzing Bank Efficiency: Are "Too-Big-to-Fail" Banks Efficient?," Working Papers 15-016, Rice University, Department of Economics.
    11. Łukasz Jarosław Kozar & Robert Matusiak & Marta Paduszyńska & Adam Sulich, 2022. "Green Jobs in the EU Renewable Energy Sector: Quantile Regression Approach," Energies, MDPI, vol. 15(18), pages 1-21, September.
    12. Monica-Lavinia DAN, 2022. "The Impact Of Public-Private Partnership In The Energy Field On Economic Growth," Romanian Journal of Economics, Institute of National Economy, vol. 54(1(63)), pages 24-33, June.
    13. Akwasi Ampofo, 2021. "Oil at work: natural resource effects on household well-being in Ghana," Empirical Economics, Springer, vol. 60(2), pages 1013-1058, February.
    14. Chien, Fengsheng & Anwar, Ahsan & Hsu, Ching-Chi & Sharif, Arshian & Razzaq, Asif & Sinha, Avik, 2021. "The role of information and communication technology in encountering environmental degradation: Proposing an SDG framework for the BRICS countries," Technology in Society, Elsevier, vol. 65(C).
    15. N. Salvati & N. Tzavidis & M. Pratesi & R. Chambers, 2012. "Small area estimation via M-quantile geographically weighted regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 1-28, March.
    16. Paul Contoyannis & Jinhu Li, 2017. "The dynamics of adolescent depression: an instrumental variable quantile regression with fixed effects approach," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(3), pages 907-922, June.
    17. Zhang, Hui & Zhou, Peng & Sun, Xiumei & Ni, Guanqun, 2024. "Disparities in energy efficiency and its determinants in Chinese cities: From the perspective of heterogeneity," Energy, Elsevier, vol. 289(C).
    18. Nadine Levratto & Aziza Garsaa & Luc Tessier, 2013. "To what extent do exemptions from social security contributions affect firm growth? New evidence using quantile estimations on panel data," Working Papers hal-00833049, HAL.
    19. Montresor, Sandro & Vezzani, Antonio, 2015. "The production function of top R&D investors: Accounting for size and sector heterogeneity with quantile estimations," Research Policy, Elsevier, vol. 44(2), pages 381-393.
    20. Javier Alejo, 2013. "Relación de Kuznets en América Latina. Explorando más allá de la media condicional," Económica, Departamento de Economía, Facultad de Ciencias Económicas, Universidad Nacional de La Plata, vol. 59, pages 3-55, January-D.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lifeda:v:30:y:2024:i:3:d:10.1007_s10985-024-09622-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.