IDEAS home Printed from https://ideas.repec.org/a/spr/lifeda/v25y2019i2d10.1007_s10985-018-9438-3.html
   My bibliography  Save this article

Parametric estimation of association in bivariate failure-time data subject to competing risks: sensitivity to underlying assumptions

Author

Listed:
  • Jeongyong Kim

    (Johns Hopkins Bloomberg School of Public Health)

  • Karen Bandeen-Roche

    (Johns Hopkins Bloomberg School of Public Health)

Abstract

There has arisen a considerable body of research addressing the estimation of association between paired failure times in the presence of competing risks. In a 2002 paper, Bandeen-Roche and Liang proposed the conditional cause-specific hazard ratio (CCSHR) as a measure of this association and a parametric method by which to estimate it. The method features an interpretable decomposition of the CCSHR into factors describing the association between a pair’s times to first failure among multiple failure causes and the association in pair members’ propensities to fail due to a common cause. There were indications of sensitivity to model assumptions, however, in the 2002 work. Here we report a detailed study of the method’s sensitivity to its parametric assumptions. We conclude that the method’s performance is most sensitive to mis-specification of temporality in the association between pair members’ first-failure times and of correlation between propensity to fail early or late and the propensity to fail of a specific cause. Implications for methods development are highlighted.

Suggested Citation

  • Jeongyong Kim & Karen Bandeen-Roche, 2019. "Parametric estimation of association in bivariate failure-time data subject to competing risks: sensitivity to underlying assumptions," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(2), pages 259-279, April.
  • Handle: RePEc:spr:lifeda:v:25:y:2019:i:2:d:10.1007_s10985-018-9438-3
    DOI: 10.1007/s10985-018-9438-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10985-018-9438-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10985-018-9438-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cheng, Yu & Fine, Jason P. & Kosorok, Michael R., 2007. "Nonparametric Association Analysis of Bivariate Competing-Risks Data," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1407-1415, December.
    2. Mark Yuying An & Roberto Ayala, 1996. "Nonparametric Estimation of a Survivor Function with Across- Interval-Censored Data," Econometrics 9611003, University Library of Munich, Germany.
    3. van der Laan, Mark J., 1996. "Nonparametric Estimation of the Bivariate Survival Function with Truncated Data," Journal of Multivariate Analysis, Elsevier, vol. 58(1), pages 107-131, July.
    4. Malka Gorfine & Li Hsu, 2011. "Frailty-Based Competing Risks Model for Multivariate Survival Data," Biometrics, The International Biometric Society, vol. 67(2), pages 415-426, June.
    5. Yu Cheng & Jason P. Fine & Michael R. Kosorok, 2009. "Nonparametric Association Analysis of Exchangeable Clustered Competing Risks Data," Biometrics, The International Biometric Society, vol. 65(2), pages 385-393, June.
    6. R. L. Prentice, 2014. "Self-consistent nonparametric maximum likelihood estimator of the bivariate survivor function," Biometrika, Biometrika Trust, vol. 101(3), pages 505-518.
    7. Yu Cheng & Jason P. Fine, 2008. "Nonparametric estimation of cause-specific cross hazard ratio with bivariate competing risks data," Biometrika, Biometrika Trust, vol. 95(1), pages 233-240.
    8. Thomas H. Scheike & Yanqing Sun & Mei-Jie Zhang & Tina Kold Jensen, 2010. "A semiparametric random effects model for multivariate competing risks data," Biometrika, Biometrika Trust, vol. 97(1), pages 133-145.
    9. Karen Bandeen-Roche & Jing Ning, 2008. "Nonparametric estimation of bivariate failure time associations in the presence of a competing risk," Biometrika, Biometrika Trust, vol. 95(1), pages 221-232.
    10. Karen Bandeen-Roche, 2002. "Modelling multivariate failure time associations in the presence of a competing risk," Biometrika, Biometrika Trust, vol. 89(2), pages 299-314, June.
    11. James Vaupel & Kenneth Manton & Eric Stallard, 1979. "The impact of heterogeneity in individual frailty on the dynamics of mortality," Demography, Springer;Population Association of America (PAA), vol. 16(3), pages 439-454, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang Hao & Cheng Yu, 2014. "Piecewise Cause-Specific Association Analyses of Multivariate Untied or Tied Competing Risks Data," The International Journal of Biostatistics, De Gruyter, vol. 10(2), pages 1-24, November.
    2. Joanna H. Shih & Paul S. Albert, 2010. "Modeling Familial Association of Ages at Onset of Disease in the Presence of Competing Risk," Biometrics, The International Biometric Society, vol. 66(4), pages 1012-1023, December.
    3. Frank Eriksson & Thomas Scheike, 2015. "Additive gamma frailty models with applications to competing risks in related individuals," Biometrics, The International Biometric Society, vol. 71(3), pages 677-686, September.
    4. Cheng Yu, 2009. "Modeling Cumulative Incidences of Dementia and Dementia-Free Death Using a Novel Three-Parameter Logistic Function," The International Journal of Biostatistics, De Gruyter, vol. 5(1), pages 1-19, November.
    5. Dongdong Li & X. Joan Hu & Mary L. McBride & John J. Spinelli, 2020. "Multiple event times in the presence of informative censoring: modeling and analysis by copulas," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(3), pages 573-602, July.
    6. Jing Ning & Karen Bandeen-Roche, 2014. "Estimation of time-dependent association for bivariate failure times in the presence of a competing risk," Biometrics, The International Biometric Society, vol. 70(1), pages 10-20, March.
    7. Hongsheng Dai & Marialuisa Restaino & Huan Wang, 2016. "A class of nonparametric bivariate survival function estimators for randomly censored and truncated data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(4), pages 736-751, October.
    8. Yu Cheng & Jason P. Fine & Michael R. Kosorok, 2009. "Nonparametric Association Analysis of Exchangeable Clustered Competing Risks Data," Biometrics, The International Biometric Society, vol. 65(2), pages 385-393, June.
    9. Carla Moreira & Jacobo de Uña-Álvarez, 2010. "Bootstrapping the NPMLE for doubly truncated data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(5), pages 567-583.
    10. Bagdonavicius, Vilijandas & Nikulin, Mikhail, 2000. "On goodness-of-fit for the linear transformation and frailty models," Statistics & Probability Letters, Elsevier, vol. 47(2), pages 177-188, April.
    11. Yahia Salhi & Pierre-Emmanuel Thérond, 2016. "Age-Specific Adjustment of Graduated Mortality," Working Papers hal-01391285, HAL.
    12. Feehan, Dennis & Wrigley-Field, Elizabeth, 2020. "How do populations aggregate?," SocArXiv 2fkw3, Center for Open Science.
    13. M. K. Lintu & Asha Kamath, 2022. "Performance of recurrent event models on defect proneness data," Annals of Operations Research, Springer, vol. 315(2), pages 2209-2218, August.
    14. Il Do Ha & Maengseok Noh & Youngjo Lee, 2010. "Bias Reduction of Likelihood Estimators in Semiparametric Frailty Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(2), pages 307-320, June.
    15. Andreas Wienke & Anne M. Herskind & Kaare Christensen & Axel Skytthe & Anatoli I. Yashin, 2002. "The influence of smoking and BMI on heritability in susceptibility to coronary heart disease," MPIDR Working Papers WP-2002-003, Max Planck Institute for Demographic Research, Rostock, Germany.
    16. Svetlana V. Ukraintseva & Anatoli I. Yashin, 2005. "Economic progress as cancer risk factor. I: Puzzling facts of cancer epidemiology," MPIDR Working Papers WP-2005-021, Max Planck Institute for Demographic Research, Rostock, Germany.
    17. Silke van Daalen & Hal Caswell, 2015. "Lifetime reproduction and the second demographic transition: Stochasticity and individual variation," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 33(20), pages 561-588.
    18. K. Motarjem & M. Mohammadzadeh & A. Abyar, 2020. "Geostatistical survival model with Gaussian random effect," Statistical Papers, Springer, vol. 61(1), pages 85-107, February.
    19. Schultz, T. Paul, 2010. "Population and Health Policies," Handbook of Development Economics, in: Dani Rodrik & Mark Rosenzweig (ed.), Handbook of Development Economics, edition 1, volume 5, chapter 0, pages 4785-4881, Elsevier.
    20. Xu, Linzhi & Zhang, Jiajia, 2010. "An EM-like algorithm for the semiparametric accelerated failure time gamma frailty model," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1467-1474, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lifeda:v:25:y:2019:i:2:d:10.1007_s10985-018-9438-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.