Advanced Search
MyIDEAS: Login to save this article or follow this journal

Nonparametric Estimation of the Bivariate Survival Function with Truncated Data


Author Info

  • van der Laan, Mark J.
Registered author(s):


    Randomly left or right truncated observations occur when one is concerned with estimation of the distribution of time between two events and when one only observes the time if one of the two events falls in a fixed time-window, so that longer survivial times have higher probability to be part of the sample than short survival times. In important AIDS-applications the time between seroconversion and AIDS is only observed if the person did not die before the start of the time-window. Hence, here the time of interest is truncated if another related time-variable is truncated. This problem is a special case of estimation of the bivariate survival function based on truncation by a bivariate truncation time, the problem covered in this paper; in the AIDS-application one component of the bivariate truncation time- vector is alway zero. In this application the bivariate survival function is of interest itself in order to study the relation between time till AIDS and time between AIDS and death. We provide a quick algorithm for computation of the NPMLE. In particular, it is shown that the NPMLE is explicit for the special case when one of the truncation times is zero, as in the aids-application above. We prove that the NPMLE is consistent under the minimal condition that [integral operator]Â dF/G

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Journal of Multivariate Analysis.

    Volume (Year): 58 (1996)
    Issue (Month): 1 (July)
    Pages: 107-131

    as in new window
    Handle: RePEc:eee:jmvana:v:58:y:1996:i:1:p:107-131

    Contact details of provider:
    Web page:

    Order Information:

    Related research

    Keywords: nonparametric maximum likelihood estimation truncation right-censoring;


    No references listed on IDEAS
    You can help add them by filling out this form.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Shen, Pao-sheng, 2010. "Semiparametric estimation of survival function when data are subject to dependent censoring and left truncation," Statistics & Probability Letters, Elsevier, vol. 80(3-4), pages 161-168, February.
    2. Pao-sheng Shen, 2010. "Nonparametric analysis of doubly truncated data," Annals of the Institute of Statistical Mathematics, Springer, vol. 62(5), pages 835-853, October.
    3. Shen, Pao-sheng, 2009. "An inverse-probability-weighted approach to the estimation of distribution function with doubly censored data," Statistics & Probability Letters, Elsevier, vol. 79(9), pages 1269-1276, May.
    4. Gürler, Ülkü & Prewitt, Kathryn, 2000. "Bivariate Density Estimation with Randomly Truncated Data," Journal of Multivariate Analysis, Elsevier, vol. 74(1), pages 88-115, July.


    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.


    Access and download statistics


    When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:58:y:1996:i:1:p:107-131. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.