IDEAS home Printed from https://ideas.repec.org/a/spr/lifeda/v23y2017i2d10.1007_s10985-015-9341-0.html
   My bibliography  Save this article

Additive mixed effect model for recurrent gap time data

Author

Listed:
  • Jieli Ding

    (Wuhan University)

  • Liuquan Sun

    (Chinese Academy of Sciences)

Abstract

Gap times between recurrent events are often of primary interest in medical and observational studies. The additive hazards model, focusing on risk differences rather than risk ratios, has been widely used in practice. However, the marginal additive hazards model does not take the dependence among gap times into account. In this paper, we propose an additive mixed effect model to analyze gap time data, and the proposed model includes a subject-specific random effect to account for the dependence among the gap times. Estimating equation approaches are developed for parameter estimation, and the asymptotic properties of the resulting estimators are established. In addition, some graphical and numerical procedures are presented for model checking. The finite sample behavior of the proposed methods is evaluated through simulation studies, and an application to a data set from a clinic study on chronic granulomatous disease is provided.

Suggested Citation

  • Jieli Ding & Liuquan Sun, 2017. "Additive mixed effect model for recurrent gap time data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(2), pages 223-253, April.
  • Handle: RePEc:spr:lifeda:v:23:y:2017:i:2:d:10.1007_s10985-015-9341-0
    DOI: 10.1007/s10985-015-9341-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10985-015-9341-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10985-015-9341-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert L. Strawderman, 2005. "The accelerated gap times model," Biometrika, Biometrika Trust, vol. 92(3), pages 647-666, September.
    2. Xianghua Luo & Chiung-Yu Huang & Lan Wang, 2013. "Quantile Regression for Recurrent Gap Time Data," Biometrics, The International Biometric Society, vol. 69(2), pages 375-385, June.
    3. Donglin Zeng & Jianwen Cai, 2010. "A semiparametric additive rate model for recurrent events with an informative terminal event," Biometrika, Biometrika Trust, vol. 97(3), pages 699-712.
    4. Xuelin Huang & Lei Liu, 2007. "A Joint Frailty Model for Survival and Gap Times Between Recurrent Events," Biometrics, The International Biometric Society, vol. 63(2), pages 389-397, June.
    5. Zeng, Donglin & Lin, D.Y., 2007. "Semiparametric Transformation Models With Random Effects for Recurrent Events," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 167-180, March.
    6. Yin, Guosheng, 2007. "Model checking for additive hazards model with multivariate survival data," Journal of Multivariate Analysis, Elsevier, vol. 98(5), pages 1018-1032, May.
    7. Mei-Cheng Wang & Ying-Qing Chen, 2000. "Nonparametric and Semiparametric Trend Analysis for Stratified Recurrence Times," Biometrics, The International Biometric Society, vol. 56(3), pages 789-794, September.
    8. Douglas E. Schaubel, 2004. "Regression methods for gap time hazard functions of sequentially ordered multivariate failure time data," Biometrika, Biometrika Trust, vol. 91(2), pages 291-303, June.
    9. D. Y. Lin & L. J. Wei & I. Yang & Z. Ying, 2000. "Semiparametric regression for the mean and rate functions of recurrent events," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 711-730.
    10. Guosheng Yin & Jianwen Cai, 2004. "Additive hazards model with multivariate failure time data," Biometrika, Biometrika Trust, vol. 91(4), pages 801-818, December.
    11. Jianwen Cai & Donglin Zeng, 2011. "Additive Mixed Effect Model for Clustered Failure Time Data," Biometrics, The International Biometric Society, vol. 67(4), pages 1340-1351, December.
    12. Cook, Richard J. & Lawless, Jerald F. & Lakhal-Chaieb, Lajmi & Lee, Ker-Ai, 2009. "Robust Estimation of Mean Functions and Treatment Effects for Recurrent Events Under Event-Dependent Censoring and Termination: Application to Skeletal Complications in Cancer Metastatic to Bone," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 60-75.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaowei Sun & Jieli Ding & Liuquan Sun, 2020. "A semiparametric additive rates model for the weighted composite endpoint of recurrent and terminal events," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(3), pages 471-492, July.
    2. Kang, Fangyuan & Sun, Liuquan & Zhao, Xingqiu, 2015. "A class of transformed hazards models for recurrent gap times," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 151-167.
    3. Miao Han & Liuquan Sun & Yutao Liu & Jun Zhu, 2018. "Joint analysis of recurrent event data with additive–multiplicative hazards model for the terminal event time," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(5), pages 523-547, July.
    4. Xin Chen & Jieli Ding & Liuquan Sun, 2018. "A semiparametric additive rate model for a modulated renewal process," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(4), pages 675-698, October.
    5. Sankaran, P.G. & Anisha, P., 2012. "Additive hazards models for gap time data with multiple causes," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1454-1462.
    6. Dongxiao Han & Xiaogang Su & Liuquan Sun & Zhou Zhang & Lei Liu, 2020. "Variable selection in joint frailty models of recurrent and terminal events," Biometrics, The International Biometric Society, vol. 76(4), pages 1330-1339, December.
    7. Chien-Lin Su & Russell J. Steele & Ian Shrier, 2021. "The semiparametric accelerated trend-renewal process for recurrent event data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(3), pages 357-387, July.
    8. Zhao, Xiaobing & Zhou, Xian, 2012. "Modeling gap times between recurrent events by marginal rate function," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 370-383.
    9. Xianghua Luo & Chiung-Yu Huang & Lan Wang, 2013. "Quantile Regression for Recurrent Gap Time Data," Biometrics, The International Biometric Society, vol. 69(2), pages 375-385, June.
    10. Yassin Mazroui & Audrey Mauguen & Simone Mathoulin-Pélissier & Gaetan MacGrogan & Véronique Brouste & Virginie Rondeau, 2016. "Time-varying coefficients in a multivariate frailty model: Application to breast cancer recurrences of several types and death," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(2), pages 191-215, April.
    11. Tianyu Zhan & Douglas E. Schaubel, 2019. "Semiparametric temporal process regression of survival-out-of-hospital," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(2), pages 322-340, April.
    12. Zhao, Xiaobing & Zhou, Xian, 2014. "Sufficient dimension reduction on marginal regression for gaps of recurrent events," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 56-71.
    13. Poulami Maitra & Leila D. A. F. Amorim & Jianwen Cai, 2020. "Multiplicative rates model for recurrent events in case-cohort studies," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(1), pages 134-157, January.
    14. Xiaoyu Che & John Angus, 2016. "A new joint model of recurrent event data with the additive hazards model for the terminal event time," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(7), pages 763-787, October.
    15. Jin-Jian Hsieh & A. Adam Ding & Weijing Wang, 2011. "Regression Analysis for Recurrent Events Data under Dependent Censoring," Biometrics, The International Biometric Society, vol. 67(3), pages 719-729, September.
    16. Xiaoyu Wang & Liuquan Sun, 2023. "Joint modeling of generalized scale-change models for recurrent event and failure time data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(1), pages 1-33, January.
    17. C.-Y. Huang & J. Qin & M.-C. Wang, 2010. "Semiparametric Analysis for Recurrent Event Data with Time-Dependent Covariates and Informative Censoring," Biometrics, The International Biometric Society, vol. 66(1), pages 39-49, March.
    18. Kwun Chuen Gary Chan & Mei-Cheng Wang, 2017. "Semiparametric Modeling and Estimation of the Terminal Behavior of Recurrent Marker Processes Before Failure Events," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 351-362, January.
    19. Xiaoyan Sun & Limin Peng & Yijian Huang & HuiChuan J. Lai, 2016. "Generalizing Quantile Regression for Counting Processes With Applications to Recurrent Events," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 145-156, March.
    20. Gongjun Xu & Sy Han Chiou & Chiung-Yu Huang & Mei-Cheng Wang & Jun Yan, 2017. "Joint Scale-Change Models for Recurrent Events and Failure Time," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 794-805, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lifeda:v:23:y:2017:i:2:d:10.1007_s10985-015-9341-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.