IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v63y2007i2p389-397.html
   My bibliography  Save this article

A Joint Frailty Model for Survival and Gap Times Between Recurrent Events

Author

Listed:
  • Xuelin Huang
  • Lei Liu

Abstract

No abstract is available for this item.

Suggested Citation

  • Xuelin Huang & Lei Liu, 2007. "A Joint Frailty Model for Survival and Gap Times Between Recurrent Events," Biometrics, The International Biometric Society, vol. 63(2), pages 389-397, June.
  • Handle: RePEc:bla:biomet:v:63:y:2007:i:2:p:389-397
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2006.00719.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Debashis Ghosh & D. Y. Lin, 2000. "Nonparametric Analysis of Recurrent Events and Death," Biometrics, The International Biometric Society, vol. 56(2), pages 554-562, June.
    2. Xuelin Huang & Robert A. Wolfe, 2002. "A Frailty Model for Informative Censoring," Biometrics, The International Biometric Society, vol. 58(3), pages 510-520, September.
    3. Lei Liu & Robert A. Wolfe & Xuelin Huang, 2004. "Shared Frailty Models for Recurrent Events and a Terminal Event," Biometrics, The International Biometric Society, vol. 60(3), pages 747-756, September.
    4. Huang, Yijian & Wang, Mei-Cheng, 2003. "Frequency of Recurrent Events at Failure Time: Modeling and Inference," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 663-670, January.
    5. D. Y. Lin & Zhiliang Ying, 2001. "Nonparametric Tests for the Gap Time Distributions of Serial Events Based on Censored Data," Biometrics, The International Biometric Society, vol. 57(2), pages 369-375, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Lei & Conaway, Mark R. & Knaus, William A. & Bergin, James D., 2008. "A random effects four-part model, with application to correlated medical costs," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4458-4473, May.
    2. Lili Wang & Kevin He & Douglas E. Schaubel, 2020. "Penalized survival models for the analysis of alternating recurrent event data," Biometrics, The International Biometric Society, vol. 76(2), pages 448-459, June.
    3. Xu Shu & Douglas E. Schaubel, 2017. "Methods for Contrasting Gap Time Hazard Functions: Application to Repeat Liver Transplantation," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(2), pages 470-488, December.
    4. Xianghua Luo & Chiung-Yu Huang & Lan Wang, 2013. "Quantile Regression for Recurrent Gap Time Data," Biometrics, The International Biometric Society, vol. 69(2), pages 375-385, June.
    5. Zhao, Xiaobing & Zhou, Xian, 2014. "Sufficient dimension reduction on marginal regression for gaps of recurrent events," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 56-71.
    6. Jieli Ding & Liuquan Sun, 2017. "Additive mixed effect model for recurrent gap time data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(2), pages 223-253, April.
    7. Chia-Hui Huang & Yi-Hau Chen, 2017. "Regression analysis for bivariate gap time with missing first gap time data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(1), pages 83-101, January.
    8. C.-Y. Huang & J. Qin & M.-C. Wang, 2010. "Semiparametric Analysis for Recurrent Event Data with Time-Dependent Covariates and Informative Censoring," Biometrics, The International Biometric Society, vol. 66(1), pages 39-49, March.
    9. Lei Liu & Xuelin Huang & John O'Quigley, 2008. "Analysis of Longitudinal Data in the Presence of Informative Observational Times and a Dependent Terminal Event, with Application to Medical Cost Data," Biometrics, The International Biometric Society, vol. 64(3), pages 950-958, September.
    10. Kang, Fangyuan & Sun, Liuquan & Zhao, Xingqiu, 2015. "A class of transformed hazards models for recurrent gap times," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 151-167.
    11. Chia-Hui Huang & Bowen Li & Chyong-Mei Chen & Weijing Wang & Yi-Hau Chen, 2017. "Subdistribution Regression for Recurrent Events Under Competing Risks: with Application to Shunt Thrombosis Study in Dialysis Patients," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(2), pages 339-356, December.
    12. P. G. Sankaran & P. Anisha, 2011. "Shared frailty model for recurrent event data with multiple causes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(12), pages 2859-2868, February.
    13. Lawrence Kryzanowski & Yanting Wu, 2023. "Signaling effects of recurrent list‐price reductions on the likelihood of house sales," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 46(1), pages 99-130, February.
    14. Dongxiao Han & Xiaogang Su & Liuquan Sun & Zhou Zhang & Lei Liu, 2020. "Variable selection in joint frailty models of recurrent and terminal events," Biometrics, The International Biometric Society, vol. 76(4), pages 1330-1339, December.
    15. Lei Liu & Xuelin Huang, 2009. "Joint analysis of correlated repeated measures and recurrent events processes in the presence of death, with application to a study on acquired immune deficiency syndrome," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(1), pages 65-81, February.
    16. Yassin Mazroui & Audrey Mauguen & Simone Mathoulin-Pélissier & Gaetan MacGrogan & Véronique Brouste & Virginie Rondeau, 2016. "Time-varying coefficients in a multivariate frailty model: Application to breast cancer recurrences of several types and death," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(2), pages 191-215, April.
    17. Chia-Hui Huang, 2019. "Mixture regression models for the gap time distributions and illness–death processes," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(1), pages 168-188, January.
    18. Richard Tawiah & Geoffrey J. McLachlan & Shu Kay Ng, 2020. "A bivariate joint frailty model with mixture framework for survival analysis of recurrent events with dependent censoring and cure fraction," Biometrics, The International Biometric Society, vol. 76(3), pages 753-766, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julie K. Furberg & Per K. Andersen & Sofie Korn & Morten Overgaard & Henrik Ravn, 2023. "Bivariate pseudo-observations for recurrent event analysis with terminal events," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(2), pages 256-287, April.
    2. Xiaowei Sun & Jieli Ding & Liuquan Sun, 2020. "A semiparametric additive rates model for the weighted composite endpoint of recurrent and terminal events," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(3), pages 471-492, July.
    3. Lei Liu & Xuelin Huang & John O'Quigley, 2008. "Analysis of Longitudinal Data in the Presence of Informative Observational Times and a Dependent Terminal Event, with Application to Medical Cost Data," Biometrics, The International Biometric Society, vol. 64(3), pages 950-958, September.
    4. Giuliana Cortese & Thomas H. Scheike, 2022. "Efficient estimation of the marginal mean of recurrent events," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1787-1821, November.
    5. Qing Pan & Douglas E. Schaubel, 2009. "Flexible Estimation of Differences in Treatment-Specific Recurrent Event Means in the Presence of a Terminating Event," Biometrics, The International Biometric Society, vol. 65(3), pages 753-761, September.
    6. Miao Han & Liuquan Sun & Yutao Liu & Jun Zhu, 2018. "Joint analysis of recurrent event data with additive–multiplicative hazards model for the terminal event time," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(5), pages 523-547, July.
    7. Tianmeng Lyu & Björn Bornkamp & Guenther Mueller‐Velten & Heinz Schmidli, 2023. "Bayesian inference for a principal stratum estimand on recurrent events truncated by death," Biometrics, The International Biometric Society, vol. 79(4), pages 3792-3802, December.
    8. Kwun Chuen Gary Chan & Mei-Cheng Wang, 2017. "Semiparametric Modeling and Estimation of the Terminal Behavior of Recurrent Marker Processes Before Failure Events," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 351-362, January.
    9. Dongxiao Han & Xiaogang Su & Liuquan Sun & Zhou Zhang & Lei Liu, 2020. "Variable selection in joint frailty models of recurrent and terminal events," Biometrics, The International Biometric Society, vol. 76(4), pages 1330-1339, December.
    10. Gongjun Xu & Sy Han Chiou & Chiung-Yu Huang & Mei-Cheng Wang & Jun Yan, 2017. "Joint Scale-Change Models for Recurrent Events and Failure Time," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 794-805, April.
    11. Donglin Zeng & D. Y. Lin, 2009. "Semiparametric Transformation Models with Random Effects for Joint Analysis of Recurrent and Terminal Events," Biometrics, The International Biometric Society, vol. 65(3), pages 746-752, September.
    12. Richard Tawiah & Geoffrey J. McLachlan & Shu Kay Ng, 2020. "A bivariate joint frailty model with mixture framework for survival analysis of recurrent events with dependent censoring and cure fraction," Biometrics, The International Biometric Society, vol. 76(3), pages 753-766, September.
    13. Lei Liu & Robert A. Wolfe & Xuelin Huang, 2004. "Shared Frailty Models for Recurrent Events and a Terminal Event," Biometrics, The International Biometric Society, vol. 60(3), pages 747-756, September.
    14. Xingqiu Zhao & Jie Zhou & Liuquan Sun, 2011. "Semiparametric Transformation Models with Time-Varying Coefficients for Recurrent and Terminal Events," Biometrics, The International Biometric Society, vol. 67(2), pages 404-414, June.
    15. Xiaodong Luo & Hong Tian & Surya Mohanty & Wei Yann Tsai, 2015. "An alternative approach to confidence interval estimation for the win ratio statistic," Biometrics, The International Biometric Society, vol. 71(1), pages 139-145, March.
    16. Yifei Sun & Mei-Cheng Wang, 2017. "Evaluating Utility Measurement From Recurrent Marker Processes in the Presence of Competing Terminal Events," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 745-756, April.
    17. Jean‐Yves Dauxois & Sophie Sencey, 2009. "Non‐parametric Tests for Recurrent Events under Competing Risks," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 649-670, December.
    18. Yassin Mazroui & Audrey Mauguen & Simone Mathoulin-Pélissier & Gaetan MacGrogan & Véronique Brouste & Virginie Rondeau, 2016. "Time-varying coefficients in a multivariate frailty model: Application to breast cancer recurrences of several types and death," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(2), pages 191-215, April.
    19. Tianyu Zhan & Douglas E. Schaubel, 2019. "Semiparametric temporal process regression of survival-out-of-hospital," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(2), pages 322-340, April.
    20. Lei Liu & Xuelin Huang, 2009. "Joint analysis of correlated repeated measures and recurrent events processes in the presence of death, with application to a study on acquired immune deficiency syndrome," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(1), pages 65-81, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:63:y:2007:i:2:p:389-397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.