IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v28y2015i3d10.1007_s10959-013-0502-3.html
   My bibliography  Save this article

Fractional Brownian Motion with Variable Hurst Parameter: Definition and Properties

Author

Listed:
  • Jelena Ryvkina

    (Tufts University)

Abstract

A class of Gaussian processes generalizing the usual fractional Brownian motion for Hurst indices in (1/2,1) and multifractal Brownian motion introduced in Ralchenko and Shevchenko (2010 Theory Probab Math Stat 80:119–130) and Boufoussi et al. (Bernoulli 16(4):1294–1311, 2010) is presented. Any measurable function assuming values in this interval can now be chosen as a variable Hurst parameter. These processes allow for modeling of phenomena where the regularity properties can change with time either continuously or through jumps, such as in the volatility of a stock or in Internet traffic. Some properties of the sample paths of the new process class, including different types of continuity and long-range dependence, are discussed. It is found that the regularity properties of the Hurst function chosen directly correspond to the regularity properties of the sample paths of the processes. The long-range dependence property of fractional Brownian motion is preserved in the larger process class. As an application, Fokker–Planck-type equations for a time-changed fractional Brownian motion with variable Hurst parameter are found.

Suggested Citation

  • Jelena Ryvkina, 2015. "Fractional Brownian Motion with Variable Hurst Parameter: Definition and Properties," Journal of Theoretical Probability, Springer, vol. 28(3), pages 866-891, September.
  • Handle: RePEc:spr:jotpro:v:28:y:2015:i:3:d:10.1007_s10959-013-0502-3
    DOI: 10.1007/s10959-013-0502-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-013-0502-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-013-0502-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alexandra Chronopoulou & Frederi Viens, 2012. "Estimation and pricing under long-memory stochastic volatility," Annals of Finance, Springer, vol. 8(2), pages 379-403, May.
    2. Fabienne Comte & Eric Renault, 1998. "Long memory in continuous‐time stochastic volatility models," Mathematical Finance, Wiley Blackwell, vol. 8(4), pages 291-323, October.
    3. Janczura, Joanna & Wyłomańska, Agnieszka, 2009. "Subdynamics of financial data from fractional Fokker-Planck equation," MPRA Paper 30649, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Josselin Garnier & Knut Sølna, 2018. "Option pricing under fast-varying and rough stochastic volatility," Annals of Finance, Springer, vol. 14(4), pages 489-516, November.
    2. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.
    3. Giulia Di Nunno & Anton Yurchenko-Tytarenko, 2022. "Sandwiched Volterra Volatility model: Markovian approximations and hedging," Papers 2209.13054, arXiv.org.
    4. Wang, Jixia & Xiao, Xiaofang & Li, Chao, 2023. "Least squares estimations for approximate fractional Vasicek model driven by a semimartingale," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 207-218.
    5. Wang, XiaoTian & Yang, ZiJian & Cao, PiYao & Wang, ShiLin, 2021. "The closed-form option pricing formulas under the sub-fractional Poisson volatility models," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    6. Josselin Garnier & Knut Solna, 2015. "Correction to Black-Scholes formula due to fractional stochastic volatility," Papers 1509.01175, arXiv.org, revised Mar 2017.
    7. Xiao, Weilin & Yu, Jun, 2019. "Asymptotic theory for rough fractional Vasicek models," Economics Letters, Elsevier, vol. 177(C), pages 26-29.
    8. Jim Gatheral & Thibault Jaisson & Mathieu Rosenbaum, 2014. "Volatility is rough," Papers 1410.3394, arXiv.org.
    9. Giulia Di Nunno & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2022. "Option pricing in Sandwiched Volterra Volatility model," Papers 2209.10688, arXiv.org, revised Dec 2023.
    10. Yicun Li & Yuanyang Teng, 2022. "Estimation of the Hurst Parameter in Spot Volatility," Mathematics, MDPI, vol. 10(10), pages 1-26, May.
    11. Archil Gulisashvili, 2017. "Large deviation principle for Volterra type fractional stochastic volatility models," Papers 1710.10711, arXiv.org, revised Aug 2018.
    12. Nourdin, Ivan & Diu Tran, T.T., 2019. "Statistical inference for Vasicek-type model driven by Hermite processes," Stochastic Processes and their Applications, Elsevier, vol. 129(10), pages 3774-3791.
    13. Jacquier, Antoine & Pannier, Alexandre, 2022. "Large and moderate deviations for stochastic Volterra systems," Stochastic Processes and their Applications, Elsevier, vol. 149(C), pages 142-187.
    14. Antoine Jacquier & Patrick Roome, 2015. "Black-Scholes in a CEV random environment," Papers 1503.08082, arXiv.org, revised Nov 2017.
    15. Christian Bayer & Peter K. Friz & Paul Gassiat & Jorg Martin & Benjamin Stemper, 2020. "A regularity structure for rough volatility," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 782-832, July.
    16. Elisa Alòs & Maria Elvira Mancino & Tai-Ho Wang, 2019. "Volatility and volatility-linked derivatives: estimation, modeling, and pricing," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 321-349, December.
    17. Asai, Manabu & McAleer, Michael, 2015. "Leverage and feedback effects on multifactor Wishart stochastic volatility for option pricing," Journal of Econometrics, Elsevier, vol. 187(2), pages 436-446.
    18. Barone-Adesi, Giovanni & Fusari, Nicola & Mira, Antonietta & Sala, Carlo, 2020. "Option market trading activity and the estimation of the pricing kernel: A Bayesian approach," Journal of Econometrics, Elsevier, vol. 216(2), pages 430-449.
    19. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.
    20. Foad Shokrollahi & Marcin Marcin Magdziarz, 2020. "Equity warrant pricing under subdiffusive fractional Brownian motion of the short rate," Papers 2007.12228, arXiv.org, revised Nov 2020.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:28:y:2015:i:3:d:10.1007_s10959-013-0502-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.