IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v94y1997i2d10.1023_a1022600232285.html
   My bibliography  Save this article

Multiplicative Programming Problems: Analysis and Efficient Point Search Heuristic

Author

Listed:
  • H. P. Benson

    (University of Florida)

  • G. M. Boger

    (University of Florida)

Abstract

Multiplicative programming problems are difficult global optimization problems known to be NP-hard. At the same time, these problems have some important applications in engineering, finance, economics, and other fields. This article has two purposes. The first is to present an analysis that shows several relationships between concave multiplicative programs and concave minimization problems, and between concave multiplicative programs and certain multiple-objective mathematical programs. The second purpose is to propose and report computational results for a heuristic efficient-point search algorithm that we have designed for use on linear multiplicative programming problems. To our knowledge, this is the first heuristic algorithm of its type. The theoretical and algorithmic results given in the article offer some potentially important new avenues for analyzing and solving multiplicative programming problems of various types.

Suggested Citation

  • H. P. Benson & G. M. Boger, 1997. "Multiplicative Programming Problems: Analysis and Efficient Point Search Heuristic," Journal of Optimization Theory and Applications, Springer, vol. 94(2), pages 487-510, August.
  • Handle: RePEc:spr:joptap:v:94:y:1997:i:2:d:10.1023_a:1022600232285
    DOI: 10.1023/A:1022600232285
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1022600232285
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1022600232285?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gerald W. Evans, 1984. "An Overview of Techniques for Solving Multiobjective Mathematical Programs," Management Science, INFORMS, vol. 30(11), pages 1268-1282, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. T. Kuno, 1999. "Solving a Class of Multiplicative Programs with 0–1 Knapsack Constraints," Journal of Optimization Theory and Applications, Springer, vol. 103(1), pages 121-135, October.
    2. Alberto Caprara & Marco Locatelli & Michele Monaci, 2016. "Theoretical and computational results about optimality-based domain reductions," Computational Optimization and Applications, Springer, vol. 64(2), pages 513-533, June.
    3. Lizhen Shao & Matthias Ehrgott, 2014. "An objective space cut and bound algorithm for convex multiplicative programmes," Journal of Global Optimization, Springer, vol. 58(4), pages 711-728, April.
    4. H. P. Benson & G. M. Boger, 2000. "Outcome-Space Cutting-Plane Algorithm for Linear Multiplicative Programming," Journal of Optimization Theory and Applications, Springer, vol. 104(2), pages 301-322, February.
    5. Gao, YueLin & Zhang, Bo, 2023. "Output-space branch-and-bound reduction algorithm for generalized linear fractional-multiplicative programming problem," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    6. Bo Zhang & Yuelin Gao & Xia Liu & Xiaoli Huang, 2020. "Output-Space Branch-and-Bound Reduction Algorithm for a Class of Linear Multiplicative Programs," Mathematics, MDPI, vol. 8(3), pages 1-34, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel P. Loucks & László Somlyódy, 1986. "Multiobjective Assessment of Multipurpose Water Resources Projects for Developing Countries," Natural Resources Forum, Blackwell Publishing, vol. 10(1), pages 61-75, February.
    2. Aouni, Belaid & Kettani, Ossama, 2001. "Goal programming model: A glorious history and a promising future," European Journal of Operational Research, Elsevier, vol. 133(2), pages 225-231, January.
    3. H. P. Benson & E. Sun, 2000. "Outcome Space Partition of the Weight Set in Multiobjective Linear Programming," Journal of Optimization Theory and Applications, Springer, vol. 105(1), pages 17-36, April.
    4. Kalu, Timothy Ch. U., 1999. "Capital budgeting under uncertainty: An extended goal programming approach," International Journal of Production Economics, Elsevier, vol. 58(3), pages 235-251, January.
    5. Yasemin Aksoy, 1990. "An interactive branch‐and‐bound algorithm for bicriterion nonconvex/mixed integer programming," Naval Research Logistics (NRL), John Wiley & Sons, vol. 37(3), pages 403-417, June.
    6. Wan S. Shin & Diane Breivik Allen, 1994. "An interactive paired comparison method for bicriterion integer programming," Naval Research Logistics (NRL), John Wiley & Sons, vol. 41(3), pages 423-434, April.
    7. Di Martinelly, Christine & Meskens, Nadine, 2017. "A bi-objective integrated approach to building surgical teams and nurse schedule rosters to maximise surgical team affinities and minimise nurses' idle time," International Journal of Production Economics, Elsevier, vol. 191(C), pages 323-334.
    8. Jean C. Bedard & Babu R. Gopi & B. Vijayalakshmi, 1991. "A multiple criteria model for audit planning decisions," Contemporary Accounting Research, John Wiley & Sons, vol. 8(1), pages 293-308, September.
    9. Metev, Boyan, 1995. "Use of reference points for solving MONLP problems," European Journal of Operational Research, Elsevier, vol. 80(1), pages 193-203, January.
    10. Crowe, Kevin, 2008. "Modeling the effects of introducing timber sales into volume-based tenure agreements," Forest Policy and Economics, Elsevier, vol. 10(3), pages 174-182, January.
    11. Alves, Maria Joao & Climaco, Joao, 2007. "A review of interactive methods for multiobjective integer and mixed-integer programming," European Journal of Operational Research, Elsevier, vol. 180(1), pages 99-115, July.
    12. Harold P. Benson & Serpil Sayin, 1997. "Towards finding global representations of the efficient set in multiple objective mathematical programming," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(1), pages 47-67, February.
    13. Liu, Fuh-Hwa Franklin & Huang, Chueng-Chiu & Yen, Yu-Lee, 2000. "Using DEA to obtain efficient solutions for multi-objective 0-1 linear programs," European Journal of Operational Research, Elsevier, vol. 126(1), pages 51-68, October.
    14. Tomasz Szapiro & Przemysław Szufel, 2014. "Simulated Negotiation Outcomes Through Recommendation Crowding," Group Decision and Negotiation, Springer, vol. 23(3), pages 443-461, May.
    15. Alves, Maria Joao & Climaco, Joao, 2000. "An interactive reference point approach for multiobjective mixed-integer programming using branch-and-bound," European Journal of Operational Research, Elsevier, vol. 124(3), pages 478-494, August.
    16. Barker, Theresa J. & Zabinsky, Zelda B., 2011. "A multicriteria decision making model for reverse logistics using analytical hierarchy process," Omega, Elsevier, vol. 39(5), pages 558-573, October.
    17. R. Ramesh & Mark H. Karwan & Stanley Zionts, 1989. "Interactive multicriteria linear programming: An extension of the method of Zionts and Wallenius," Naval Research Logistics (NRL), John Wiley & Sons, vol. 36(3), pages 321-335, June.
    18. H. P. Benson, 1998. "Hybrid Approach for Solving Multiple-Objective Linear Programs in Outcome Space," Journal of Optimization Theory and Applications, Springer, vol. 98(1), pages 17-35, July.
    19. Dung-Ying Lin & Chi Xie, 2011. "The Pareto-optimal Solution Set of the Equilibrium Network Design Problem with Multiple Commensurate Objectives," Networks and Spatial Economics, Springer, vol. 11(4), pages 727-751, December.
    20. N. Mahdavi-Amiri & F. Salehi Sadaghiani, 2017. "Strictly feasible solutions and strict complementarity in multiple objective linear optimization," 4OR, Springer, vol. 15(3), pages 303-326, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:94:y:1997:i:2:d:10.1023_a:1022600232285. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.