IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v158y2013i3d10.1007_s10957-013-0281-0.html
   My bibliography  Save this article

A Polynomial Arc-Search Interior-Point Algorithm for Linear Programming

Author

Listed:
  • Yaguang Yang

    (NRC)

Abstract

In this paper, ellipsoidal estimations are used to track the central path of linear programming. A higher-order interior-point algorithm is devised to search the optimizers along the ellipse. The algorithm is proved to be polynomial with the best complexity bound for all polynomial algorithms and better than the best known bound for higher-order algorithms.

Suggested Citation

  • Yaguang Yang, 2013. "A Polynomial Arc-Search Interior-Point Algorithm for Linear Programming," Journal of Optimization Theory and Applications, Springer, vol. 158(3), pages 859-873, September.
  • Handle: RePEc:spr:joptap:v:158:y:2013:i:3:d:10.1007_s10957-013-0281-0
    DOI: 10.1007/s10957-013-0281-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-013-0281-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-013-0281-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shinji Mizuno & Michael J. Todd & Yinyu Ye, 1993. "On Adaptive-Step Primal-Dual Interior-Point Algorithms for Linear Programming," Mathematics of Operations Research, INFORMS, vol. 18(4), pages 964-981, November.
    2. Yang, Yaguang, 2011. "A polynomial arc-search interior-point algorithm for convex quadratic programming," European Journal of Operational Research, Elsevier, vol. 215(1), pages 25-38, November.
    3. Renato D. C. Monteiro & Ilan Adler & Mauricio G. C. Resende, 1990. "A Polynomial-Time Primal-Dual Affine Scaling Algorithm for Linear and Convex Quadratic Programming and Its Power Series Extension," Mathematics of Operations Research, INFORMS, vol. 15(2), pages 191-214, May.
    4. Robert G. Bland & Donald Goldfarb & Michael J. Todd, 1981. "Feature Article—The Ellipsoid Method: A Survey," Operations Research, INFORMS, vol. 29(6), pages 1039-1091, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabio Vitor & Todd Easton, 2022. "Projected orthogonal vectors in two-dimensional search interior point algorithms for linear programming," Computational Optimization and Applications, Springer, vol. 83(1), pages 211-246, September.
    2. M. Pirhaji & M. Zangiabadi & H. Mansouri, 2017. "An $$\ell _{2}$$ ℓ 2 -neighborhood infeasible interior-point algorithm for linear complementarity problems," 4OR, Springer, vol. 15(2), pages 111-131, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sturm, J.F., 2002. "Implementation of Interior Point Methods for Mixed Semidefinite and Second Order Cone Optimization Problems," Other publications TiSEM b25faf5d-0142-4e14-b598-a, Tilburg University, School of Economics and Management.
    2. V. Balakrishnan & R. L. Kashyap, 1999. "Robust Stability and Performance Analysis of Uncertain Systems Using Linear Matrix Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 100(3), pages 457-478, March.
    3. M. Pirhaji & M. Zangiabadi & H. Mansouri, 2017. "An $$\ell _{2}$$ ℓ 2 -neighborhood infeasible interior-point algorithm for linear complementarity problems," 4OR, Springer, vol. 15(2), pages 111-131, June.
    4. M. Salahi & T. Terlaky, 2007. "Adaptive Large-Neighborhood Self-Regular Predictor-Corrector Interior-Point Methods for Linear Optimization," Journal of Optimization Theory and Applications, Springer, vol. 132(1), pages 143-160, January.
    5. Tanaka, Masato & Matsui, Tomomi, 2022. "Pseudo polynomial size LP formulation for calculating the least core value of weighted voting games," Mathematical Social Sciences, Elsevier, vol. 115(C), pages 47-51.
    6. Yinyu Ye, 2005. "A New Complexity Result on Solving the Markov Decision Problem," Mathematics of Operations Research, INFORMS, vol. 30(3), pages 733-749, August.
    7. Y. B. Zhao & J. Y. Han, 1999. "Two Interior-Point Methods for Nonlinear P *(τ)-Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 102(3), pages 659-679, September.
    8. Mehdi Karimi & Levent Tunçel, 2020. "Primal–Dual Interior-Point Methods for Domain-Driven Formulations," Mathematics of Operations Research, INFORMS, vol. 45(2), pages 591-621, May.
    9. M. Sayadi Shahraki & H. Mansouri & M. Zangiabadi, 2016. "A New Primal–Dual Predictor–Corrector Interior-Point Method for Linear Programming Based on a Wide Neighbourhood," Journal of Optimization Theory and Applications, Springer, vol. 170(2), pages 546-561, August.
    10. Behrouz Kheirfam, 2015. "A Corrector–Predictor Path-Following Method for Convex Quadratic Symmetric Cone Optimization," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 246-260, January.
    11. F. A. Potra & R. Sheng, 1998. "Superlinear Convergence of Interior-Point Algorithms for Semidefinite Programming," Journal of Optimization Theory and Applications, Springer, vol. 99(1), pages 103-119, October.
    12. Darvay, Zsolt & Illés, Tibor & Rigó, Petra Renáta, 2022. "Predictor-corrector interior-point algorithm for P*(κ)-linear complementarity problems based on a new type of algebraic equivalent transformation technique," European Journal of Operational Research, Elsevier, vol. 298(1), pages 25-35.
    13. F. A. Potra & R. Sheng, 1998. "Superlinearly Convergent Infeasible-Interior-Point Algorithm for Degenerate LCP," Journal of Optimization Theory and Applications, Springer, vol. 97(2), pages 249-269, May.
    14. Ali Mohammad-Nezhad & Tamás Terlaky, 2017. "A polynomial primal-dual affine scaling algorithm for symmetric conic optimization," Computational Optimization and Applications, Springer, vol. 66(3), pages 577-600, April.
    15. Zhang, Yufeng & Khani, Alireza, 2019. "An algorithm for reliable shortest path problem with travel time correlations," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 92-113.
    16. Masakazu Muramatsu & Robert J. Vanderbei, 1999. "Primal-Dual Affine-Scaling Algorithms Fail for Semidefinite Programming," Mathematics of Operations Research, INFORMS, vol. 24(1), pages 149-175, February.
    17. Paul Karaenke & Martin Bichler & Stefan Minner, 2019. "Coordination Is Hard: Electronic Auction Mechanisms for Increased Efficiency in Transportation Logistics," Management Science, INFORMS, vol. 65(12), pages 5884-5900, December.
    18. M. J. Best & J. Hlouskova, 2007. "An Algorithm for Portfolio Optimization with Variable Transaction Costs, Part 2: Computational Analysis," Journal of Optimization Theory and Applications, Springer, vol. 135(3), pages 531-547, December.
    19. Simone A. Rocha & Thiago G. Mattos & Rodrigo T. N. Cardoso & Eduardo G. Silveira, 2022. "Applying Artificial Neural Networks and Nonlinear Optimization Techniques to Fault Location in Transmission Lines—Statistical Analysis," Energies, MDPI, vol. 15(11), pages 1-24, June.
    20. Zhongyi Liu & Yue Chen & Wenyu Sun & Zhihui Wei, 2012. "A Predictor-corrector algorithm with multiple corrections for convex quadratic programming," Computational Optimization and Applications, Springer, vol. 52(2), pages 373-391, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:158:y:2013:i:3:d:10.1007_s10957-013-0281-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.