IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v66y2017i3d10.1007_s10589-016-9874-5.html
   My bibliography  Save this article

A polynomial primal-dual affine scaling algorithm for symmetric conic optimization

Author

Listed:
  • Ali Mohammad-Nezhad

    (Lehigh University)

  • Tamás Terlaky

    (Lehigh University)

Abstract

The primal-dual Dikin-type affine scaling method was originally proposed for linear optimization and then extended to semidefinite optimization. Here, the method is generalized to symmetric conic optimization using the notion of Euclidean Jordan algebras. The method starts with an interior feasible but not necessarily centered primal-dual solution, and it features both centering and reducing the duality gap simultaneously. The method’s iteration complexity bound is analogous to the semidefinite optimization case. Numerical experiments demonstrate that the method is viable and robust when compared to SeDuMi, MOSEK and SDPT3.

Suggested Citation

  • Ali Mohammad-Nezhad & Tamás Terlaky, 2017. "A polynomial primal-dual affine scaling algorithm for symmetric conic optimization," Computational Optimization and Applications, Springer, vol. 66(3), pages 577-600, April.
  • Handle: RePEc:spr:coopap:v:66:y:2017:i:3:d:10.1007_s10589-016-9874-5
    DOI: 10.1007/s10589-016-9874-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-016-9874-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-016-9874-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. E. de Klerk & C. Roos & T. Terlaky, 1998. "Polynomial Primal-Dual Affine Scaling Algorithms in Semidefinite Programming," Journal of Combinatorial Optimization, Springer, vol. 2(1), pages 51-69, March.
    2. B. Jansen & C. Roos & T. Terlaky, 1996. "A Polynomial Primal-Dual Dikin-Type Algorithm for Linear Programming," Mathematics of Operations Research, INFORMS, vol. 21(2), pages 341-353, May.
    3. Renato D. C. Monteiro & Ilan Adler & Mauricio G. C. Resende, 1990. "A Polynomial-Time Primal-Dual Affine Scaling Algorithm for Linear and Convex Quadratic Programming and Its Power Series Extension," Mathematics of Operations Research, INFORMS, vol. 15(2), pages 191-214, May.
    4. Yu. E. Nesterov & M. J. Todd, 1997. "Self-Scaled Barriers and Interior-Point Methods for Convex Programming," Mathematics of Operations Research, INFORMS, vol. 22(1), pages 1-42, February.
    5. NESTEROV , Yurii & TODD , Michael, 1995. "Primal-Dual Interior-Point Methods for Self-Scaled Cones," LIDAM Discussion Papers CORE 1995044, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    6. Gu, G. & Zangiabadi, M. & Roos, C., 2011. "Full Nesterov-Todd step infeasible interior-point method for symmetric optimization," European Journal of Operational Research, Elsevier, vol. 214(3), pages 473-484, November.
    7. NESTEROV ., Yurii E. & TODD , Michael J, 1994. "Self-Scaled Cones and Interior-Point Methods in Nonlinear Programming," LIDAM Discussion Papers CORE 1994062, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sturm, J.F., 2001. "Avoiding Numerical Cancellation in the Interior Point Method for Solving Semidefinite Programs," Discussion Paper 2001-27, Tilburg University, Center for Economic Research.
    2. NESTEROV, Yu., 2006. "Towards nonsymmetric conic optimization," LIDAM Discussion Papers CORE 2006028, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Alemseged Weldeyesus & Mathias Stolpe, 2015. "A primal-dual interior point method for large-scale free material optimization," Computational Optimization and Applications, Springer, vol. 61(2), pages 409-435, June.
    4. Helmberg, C., 2002. "Semidefinite programming," European Journal of Operational Research, Elsevier, vol. 137(3), pages 461-482, March.
    5. Chee-Khian Sim, 2019. "Interior point method on semi-definite linear complementarity problems using the Nesterov–Todd (NT) search direction: polynomial complexity and local convergence," Computational Optimization and Applications, Springer, vol. 74(2), pages 583-621, November.
    6. Terlaky, Tamas, 2001. "An easy way to teach interior-point methods," European Journal of Operational Research, Elsevier, vol. 130(1), pages 1-19, April.
    7. G. Q. Wang & Y. Q. Bai, 2012. "A New Full Nesterov–Todd Step Primal–Dual Path-Following Interior-Point Algorithm for Symmetric Optimization," Journal of Optimization Theory and Applications, Springer, vol. 154(3), pages 966-985, September.
    8. G. Q. Wang & L. C. Kong & J. Y. Tao & G. Lesaja, 2015. "Improved Complexity Analysis of Full Nesterov–Todd Step Feasible Interior-Point Method for Symmetric Optimization," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 588-604, August.
    9. Ximei Yang & Hongwei Liu & Yinkui Zhang, 2015. "A New Strategy in the Complexity Analysis of an Infeasible-Interior-Point Method for Symmetric Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 572-587, August.
    10. G. Q. Wang & Y. Q. Bai & X. Y. Gao & D. Z. Wang, 2015. "Improved Complexity Analysis of Full Nesterov–Todd Step Interior-Point Methods for Semidefinite Optimization," Journal of Optimization Theory and Applications, Springer, vol. 165(1), pages 242-262, April.
    11. Arjan B. Berkelaar & Jos F. Sturm & Shuzhong Zhang, 1997. "Polynomial Primal-Dual Cone Affine Scaling for Semidefinite Programming," Tinbergen Institute Discussion Papers 97-025/4, Tinbergen Institute.
    12. J.F. Sturm & S. Zhang, 1998. "On Sensitivity of Central Solutions in Semidefinite Programming," Tinbergen Institute Discussion Papers 98-040/4, Tinbergen Institute.
    13. Changhe Liu & Hongwei Liu & Xinze Liu, 2012. "Polynomial Convergence of Second-Order Mehrotra-Type Predictor-Corrector Algorithms over Symmetric Cones," Journal of Optimization Theory and Applications, Springer, vol. 154(3), pages 949-965, September.
    14. G. Q. Wang & Y. Q. Bai, 2012. "A Class of Polynomial Interior Point Algorithms for the Cartesian P-Matrix Linear Complementarity Problem over Symmetric Cones," Journal of Optimization Theory and Applications, Springer, vol. 152(3), pages 739-772, March.
    15. Hongwei Liu & Ximei Yang & Changhe Liu, 2013. "A New Wide Neighborhood Primal–Dual Infeasible-Interior-Point Method for Symmetric Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 158(3), pages 796-815, September.
    16. Soodabeh Asadi & Hossein Mansouri & Zsolt Darvay & Maryam Zangiabadi & Nezam Mahdavi-Amiri, 2019. "Large-Neighborhood Infeasible Predictor–Corrector Algorithm for Horizontal Linear Complementarity Problems over Cartesian Product of Symmetric Cones," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 811-829, March.
    17. NESTEROV, Yu., 2006. "Constructing self-concordant barriers for convex cones," LIDAM Discussion Papers CORE 2006030, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    18. Petra Renáta Rigó & Zsolt Darvay, 2018. "Infeasible interior-point method for symmetric optimization using a positive-asymptotic barrier," Computational Optimization and Applications, Springer, vol. 71(2), pages 483-508, November.
    19. Gu, G. & Zangiabadi, M. & Roos, C., 2011. "Full Nesterov-Todd step infeasible interior-point method for symmetric optimization," European Journal of Operational Research, Elsevier, vol. 214(3), pages 473-484, November.
    20. M. Sayadi Shahraki & H. Mansouri & M. Zangiabadi, 2017. "Two wide neighborhood interior-point methods for symmetric cone optimization," Computational Optimization and Applications, Springer, vol. 68(1), pages 29-55, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:66:y:2017:i:3:d:10.1007_s10589-016-9874-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.