IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v32y2021i1d10.1007_s10845-020-01556-3.html
   My bibliography  Save this article

An adaptive update model based on improved Long Short Term Memory for online prediction of vibration signal

Author

Listed:
  • Huixin Tian

    (Tiangong University
    Tiangong University
    State Key Laboratory of Process Automation in Mining and Metallurgy/Beijing Key Laboratory of Process Automation in Mining and Metallurgy Research)

  • Daixu Ren

    (Tiangong University
    Tiangong University)

  • Kun Li

    (Tiangong University)

  • Zhen Zhao

    (Civil Aviation University of China)

Abstract

In industrial production, the characteristics of compressor vibration signal change with the production environment and other external factors. Therefore, to ensure the effectiveness of the model, the vibration signal prediction model needs to be updated constantly. Due to the complex structure of Long Short Term Memory (LSTM) network, the LSTM model is difficult to adapt to the scene of online update. Therefore, the update model based on LSTM is difficult to respond quickly to data changes, which affects the accuracy of the model. To solve this problem, the online learning algorithm is introduced into prediction model, Error-LSTM (E-LSTM) model is proposed in this paper. The main idea of E-LSTM model is to improve the accuracy and efficiency of the model according to test error of the model. First, the hidden layer neurons of LSTM network are divided into blocks, and only part of the modules are activated at each time step. The number of modules activated is determined by test error. Thus, the training speed of the model is accelerated and the efficiency of the model is improved. Second, the E-LSTM model can adaptively adjust the training method according to the data distribution characteristics, so as to improve the accuracy of updated model. In experimental part, two types of datasets are used to verify the performance of the proposed model. LSTM model is used for comparative experiments, and the results showed that the updating model based on E-LSTM is better than that based on LSTM in terms of model accuracy and efficiency.

Suggested Citation

  • Huixin Tian & Daixu Ren & Kun Li & Zhen Zhao, 2021. "An adaptive update model based on improved Long Short Term Memory for online prediction of vibration signal," Journal of Intelligent Manufacturing, Springer, vol. 32(1), pages 37-49, January.
  • Handle: RePEc:spr:joinma:v:32:y:2021:i:1:d:10.1007_s10845-020-01556-3
    DOI: 10.1007/s10845-020-01556-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-020-01556-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-020-01556-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pedro Malaca & Luis F. Rocha & D. Gomes & João Silva & Germano Veiga, 2019. "Online inspection system based on machine learning techniques: real case study of fabric textures classification for the automotive industry," Journal of Intelligent Manufacturing, Springer, vol. 30(1), pages 351-361, January.
    2. Salah Bouktif & Ali Fiaz & Ali Ouni & Mohamed Adel Serhani, 2018. "Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches †," Energies, MDPI, vol. 11(7), pages 1-20, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hasan Tercan & Philipp Deibert & Tobias Meisen, 2022. "Continual learning of neural networks for quality prediction in production using memory aware synapses and weight transfer," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 283-292, January.
    2. Chi Ma & Hongquan Gui & Jialan Liu, 2023. "Self learning-empowered thermal error control method of precision machine tools based on digital twin," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 695-717, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bingjie Jin & Guihua Zeng & Zhilin Lu & Hongqiao Peng & Shuxin Luo & Xinhe Yang & Haojun Zhu & Mingbo Liu, 2022. "Hybrid LSTM–BPNN-to-BPNN Model Considering Multi-Source Information for Forecasting Medium- and Long-Term Electricity Peak Load," Energies, MDPI, vol. 15(20), pages 1-20, October.
    2. Suriyan Jomthanachai & Wai Peng Wong & Khai Wah Khaw, 2024. "An Application of Machine Learning to Logistics Performance Prediction: An Economics Attribute-Based of Collective Instance," Computational Economics, Springer;Society for Computational Economics, vol. 63(2), pages 741-792, February.
    3. Mst. Shapna Akter & Hossain Shahriar & Reaz Chowdhury & M. R. C. Mahdy, 2022. "Forecasting the Risk Factor of Frontier Markets: A Novel Stacking Ensemble of Neural Network Approach," Future Internet, MDPI, vol. 14(9), pages 1-23, August.
    4. Shree Krishna Acharya & Young-Min Wi & Jaehee Lee, 2019. "Short-Term Load Forecasting for a Single Household Based on Convolution Neural Networks Using Data Augmentation," Energies, MDPI, vol. 12(18), pages 1-19, September.
    5. Shuo Meng & Ruru Pan & Weidong Gao & Jian Zhou & Jingan Wang & Wentao He, 2021. "A multi-task and multi-scale convolutional neural network for automatic recognition of woven fabric pattern," Journal of Intelligent Manufacturing, Springer, vol. 32(4), pages 1147-1161, April.
    6. Hao Wang & Chen Peng & Bolin Liao & Xinwei Cao & Shuai Li, 2023. "Wind Power Forecasting Based on WaveNet and Multitask Learning," Sustainability, MDPI, vol. 15(14), pages 1-22, July.
    7. Chi Hua & Erxi Zhu & Liang Kuang & Dechang Pi, 2019. "Short-term power prediction of photovoltaic power station based on long short-term memory-back-propagation," International Journal of Distributed Sensor Networks, , vol. 15(10), pages 15501477198, October.
    8. Musaed Alhussein & Syed Irtaza Haider & Khursheed Aurangzeb, 2019. "Microgrid-Level Energy Management Approach Based on Short-Term Forecasting of Wind Speed and Solar Irradiance," Energies, MDPI, vol. 12(8), pages 1-27, April.
    9. Rafael Sánchez-Durán & Joaquín Luque & Julio Barbancho, 2019. "Long-Term Demand Forecasting in a Scenario of Energy Transition," Energies, MDPI, vol. 12(16), pages 1-23, August.
    10. Pinheiro, Marco G. & Madeira, Sara C. & Francisco, Alexandre P., 2023. "Short-term electricity load forecasting—A systematic approach from system level to secondary substations," Applied Energy, Elsevier, vol. 332(C).
    11. Stefenon, Stefano Frizzo & Seman, Laio Oriel & Aquino, Luiza Scapinello & Coelho, Leandro dos Santos, 2023. "Wavelet-Seq2Seq-LSTM with attention for time series forecasting of level of dams in hydroelectric power plants," Energy, Elsevier, vol. 274(C).
    12. Arash Moradzadeh & Sahar Zakeri & Maryam Shoaran & Behnam Mohammadi-Ivatloo & Fazel Mohammadi, 2020. "Short-Term Load Forecasting of Microgrid via Hybrid Support Vector Regression and Long Short-Term Memory Algorithms," Sustainability, MDPI, vol. 12(17), pages 1-17, August.
    13. Yiang Wang & Chong Luo & Wenqi Zhang & Xiangtian Meng & Qiong Liu & Xinle Zhang & Huanjun Liu, 2022. "Remote Sensing Prediction Model of Cultivated Land Soil Organic Matter Considering the Best Time Window," Sustainability, MDPI, vol. 15(1), pages 1-15, December.
    14. Jiseong Noh & Hyun-Ji Park & Jong Soo Kim & Seung-June Hwang, 2020. "Gated Recurrent Unit with Genetic Algorithm for Product Demand Forecasting in Supply Chain Management," Mathematics, MDPI, vol. 8(4), pages 1-14, April.
    15. Roman V. Klyuev & Irbek D. Morgoev & Angelika D. Morgoeva & Oksana A. Gavrina & Nikita V. Martyushev & Egor A. Efremenkov & Qi Mengxu, 2022. "Methods of Forecasting Electric Energy Consumption: A Literature Review," Energies, MDPI, vol. 15(23), pages 1-33, November.
    16. Alexandru Pîrjan & George Căruțașu & Dana-Mihaela Petroșanu, 2018. "Designing, Developing, and Implementing a Forecasting Method for the Produced and Consumed Electricity in the Case of Small Wind Farms Situated on Quite Complex Hilly Terrain," Energies, MDPI, vol. 11(10), pages 1-42, October.
    17. Hadjout, D. & Torres, J.F. & Troncoso, A. & Sebaa, A. & Martínez-Álvarez, F., 2022. "Electricity consumption forecasting based on ensemble deep learning with application to the Algerian market," Energy, Elsevier, vol. 243(C).
    18. Kostadin Yotov & Emil Hadzhikolev & Stanka Hadzhikoleva & Stoyan Cheresharov, 2022. "Neuro-Cybernetic System for Forecasting Electricity Consumption in the Bulgarian National Power System," Sustainability, MDPI, vol. 14(17), pages 1-18, September.
    19. Hany Habbak & Mohamed Mahmoud & Khaled Metwally & Mostafa M. Fouda & Mohamed I. Ibrahem, 2023. "Load Forecasting Techniques and Their Applications in Smart Grids," Energies, MDPI, vol. 16(3), pages 1-33, February.
    20. Stanislaw Osowski & Robert Szmurlo & Krzysztof Siwek & Tomasz Ciechulski, 2022. "Neural Approaches to Short-Time Load Forecasting in Power Systems—A Comparative Study," Energies, MDPI, vol. 15(9), pages 1-21, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:32:y:2021:i:1:d:10.1007_s10845-020-01556-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.