IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v31y2020i2d10.1007_s10845-018-1447-2.html
   My bibliography  Save this article

Joint modeling of classification and regression for improving faulty wafer detection in semiconductor manufacturing

Author

Listed:
  • Seokho Kang

    (Sungkyunkwan University)

Abstract

In the semiconductor manufacturing process, it is important to identify wafers on which faults have occurred or will occur to avoid unnecessary and costly further processing and physical inspections. This issue can be addressed by formulating the faulty wafer detection problem as a predictive modeling task, in which the process parameters/measurements and subsequent inspection results concerning the faults comprise the input and output variables at the wafer level, respectively. To achieve improved predictive performance, this paper presents a joint modeling method that incorporates classification and regression tasks into a single prediction model. Given the output variables in both binary and continuous forms, the prediction model simultaneously considers both the classification and regression tasks to complement each other, where each task predicts the binary and continuous output variables, respectively. The outputs from these two tasks are combined to predict whether a wafer is faulty. The entire model is implemented as a neural network, and is trained by optimizing a single objective function. The effectiveness of the model is demonstrated with a case study using real-world data from a semiconductor manufacturer.

Suggested Citation

  • Seokho Kang, 2020. "Joint modeling of classification and regression for improving faulty wafer detection in semiconductor manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 319-326, February.
  • Handle: RePEc:spr:joinma:v:31:y:2020:i:2:d:10.1007_s10845-018-1447-2
    DOI: 10.1007/s10845-018-1447-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-018-1447-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-018-1447-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chien-Chang Hsu & Min-Sheng Chen, 2016. "Intelligent maintenance prediction system for LED wafer testing machine," Journal of Intelligent Manufacturing, Springer, vol. 27(2), pages 335-342, April.
    2. Manjeevan Seera & Chee Peng Lim & Chu Kiong Loo, 2016. "Motor fault detection and diagnosis using a hybrid FMM-CART model with online learning," Journal of Intelligent Manufacturing, Springer, vol. 27(6), pages 1273-1285, December.
    3. Chen-Fu Chien & Chiao-Wen Liu & Shih-Chung Chuang, 2017. "Analysing semiconductor manufacturing big data for root cause detection of excursion for yield enhancement," International Journal of Production Research, Taylor & Francis Journals, vol. 55(17), pages 5095-5107, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiyoung Song & Young Chul Lee & Jeongsu Lee, 2023. "Deep generative model with time series-image encoding for manufacturing fault detection in die casting process," Journal of Intelligent Manufacturing, Springer, vol. 34(7), pages 3001-3014, October.
    2. Sangho Lee & Youngdoo Son, 2021. "Motor Load Balancing with Roll Force Prediction for a Cold-Rolling Setup with Neural Networks," Mathematics, MDPI, vol. 9(12), pages 1-21, June.
    3. Wenhan Fu & Chen-Fu Chien & Lizhen Tang, 2022. "Bayesian network for integrated circuit testing probe card fault diagnosis and troubleshooting to empower Industry 3.5 smart production and an empirical study," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 785-798, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sangho Lee & Youngdoo Son, 2021. "Motor Load Balancing with Roll Force Prediction for a Cold-Rolling Setup with Neural Networks," Mathematics, MDPI, vol. 9(12), pages 1-21, June.
    2. Diyi Zhou & Shihua Gong & Ziyue Wang & Delong Li & Huaiqing Lu, 2021. "Error analysis based on error transfer theory and compensation strategy for LED chip visual localization systems," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1345-1359, June.
    3. Dawid Szurgacz & Sergey Zhironkin & Michal Cehlár & Stefan Vöth & Sam Spearing & Ma Liqiang, 2021. "A Step-by-Step Procedure for Tests and Assessment of the Automatic Operation of a Powered Roof Support," Energies, MDPI, vol. 14(3), pages 1-16, January.
    4. Xiang Li & Wei Zhang & Qian Ding & Jian-Qiao Sun, 2020. "Intelligent rotating machinery fault diagnosis based on deep learning using data augmentation," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 433-452, February.
    5. Eduardo Oliveira & Vera L. Miguéis & José L. Borges, 2023. "Automatic root cause analysis in manufacturing: an overview & conceptualization," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2061-2078, June.
    6. Mengting Yao & Yun Zhu & Junjie Li & Hua Wei & Penghui He, 2019. "Research on Predicting Line Loss Rate in Low Voltage Distribution Network Based on Gradient Boosting Decision Tree," Energies, MDPI, vol. 12(13), pages 1-14, June.
    7. Chung-Feng Jeffrey Kuo & Tz-ying Fang & Chi-Lung Lee & Han-Cheng Wu, 2019. "Automated optical inspection system for surface mount device light emitting diodes," Journal of Intelligent Manufacturing, Springer, vol. 30(2), pages 641-655, February.
    8. Wenhan Fu & Chen-Fu Chien & Lizhen Tang, 2022. "Bayesian network for integrated circuit testing probe card fault diagnosis and troubleshooting to empower Industry 3.5 smart production and an empirical study," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 785-798, March.
    9. Yang Hui & Xuesong Mei & Gedong Jiang & Fei Zhao & Pengcheng Shen, 2020. "Assembly consistency improvement of straightness error of the linear axis based on the consistency degree and GA-MSVM-I-KM," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1429-1441, August.
    10. Chen-Fu Chien & Chung-Jen Kuo & Chih-Min Yu, 2020. "Tool allocation to smooth work-in-process for cycle time reduction and an empirical study," Annals of Operations Research, Springer, vol. 290(1), pages 1009-1033, July.
    11. Jungwon Yu & Jaeyel Jang & Jaeyeong Yoo & June Ho Park & Sungshin Kim, 2018. "A Fault Isolation Method via Classification and Regression Tree-Based Variable Ranking for Drum-Type Steam Boiler in Thermal Power Plant," Energies, MDPI, vol. 11(5), pages 1-19, May.
    12. Maroua Said & Khaoula ben Abdellafou & Okba Taouali, 2020. "Machine learning technique for data-driven fault detection of nonlinear processes," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 865-884, April.
    13. Acciarini, Chiara & Cappa, Francesco & Boccardelli, Paolo & Oriani, Raffaele, 2023. "How can organizations leverage big data to innovate their business models? A systematic literature review," Technovation, Elsevier, vol. 123(C).
    14. Gang Wang & Feng Zhang & Bayi Cheng & Fang Fang, 2021. "DAMER: a novel diagnosis aggregation method with evidential reasoning rule for bearing fault diagnosis," Journal of Intelligent Manufacturing, Springer, vol. 32(1), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:31:y:2020:i:2:d:10.1007_s10845-018-1447-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.