IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v77y2020i4d10.1007_s10898-020-00898-9.html
   My bibliography  Save this article

An inner approximation method to compute the weight set decomposition of a triobjective mixed-integer problem

Author

Listed:
  • Pascal Halffmann

    (Technische Universität Kaiserslautern)

  • Tobias Dietz

    (Technische Universität Kaiserslautern)

  • Anthony Przybylski

    (Université de Nantes)

  • Stefan Ruzika

    (Technische Universität Kaiserslautern)

Abstract

This article is dedicated to the weight set decomposition of a multiobjective (mixed-)integer linear problem with three objectives. We propose an algorithm that returns a decomposition of the parameter set of the weighted sum scalarization by solving biobjective subproblems via Dichotomic Search which corresponds to a line exploration in the weight set. Additionally, we present theoretical results regarding the boundary of the weight set components that direct the line exploration. The resulting algorithm runs in output polynomial time, i.e. its running time is polynomial in the encoding length of both the input and output. Also, the proposed approach can be used for each weight set component individually and is able to give intermediate results, which can be seen as an “approximation” of the weight set component. We compare the running time of our method with the one of an existing algorithm and conduct a computational study that shows the competitiveness of our algorithm. Further, we give a state-of-the-art survey of algorithms in the literature.

Suggested Citation

  • Pascal Halffmann & Tobias Dietz & Anthony Przybylski & Stefan Ruzika, 2020. "An inner approximation method to compute the weight set decomposition of a triobjective mixed-integer problem," Journal of Global Optimization, Springer, vol. 77(4), pages 715-742, August.
  • Handle: RePEc:spr:jglopt:v:77:y:2020:i:4:d:10.1007_s10898-020-00898-9
    DOI: 10.1007/s10898-020-00898-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-020-00898-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-020-00898-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. H. W. Kuhn, 1955. "The Hungarian method for the assignment problem," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 2(1‐2), pages 83-97, March.
    2. Y. P. Aneja & K. P. K. Nair, 1979. "Bicriteria Transportation Problem," Management Science, INFORMS, vol. 25(1), pages 73-78, January.
    3. Alves, Maria João & Costa, João Paulo, 2016. "Graphical exploration of the weight space in three-objective mixed integer linear programs," European Journal of Operational Research, Elsevier, vol. 248(1), pages 72-83.
    4. Andreas Hamel & Andreas Löhne & Birgit Rudloff, 2014. "Benson type algorithms for linear vector optimization and applications," Journal of Global Optimization, Springer, vol. 59(4), pages 811-836, August.
    5. Anthony Przybylski & Xavier Gandibleux & Matthias Ehrgott, 2010. "A Recursive Algorithm for Finding All Nondominated Extreme Points in the Outcome Set of a Multiobjective Integer Programme," INFORMS Journal on Computing, INFORMS, vol. 22(3), pages 371-386, August.
    6. Matthias Müller-Hannemann & Karsten Weihe, 2006. "On the cardinality of the Pareto set in bicriteria shortest path problems," Annals of Operations Research, Springer, vol. 147(1), pages 269-286, October.
    7. Jochen Gorski & Kathrin Klamroth & Stefan Ruzika, 2011. "Connectedness of Efficient Solutions in Multiple Objective Combinatorial Optimization," Journal of Optimization Theory and Applications, Springer, vol. 150(3), pages 475-497, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stephan Helfrich & Tyler Perini & Pascal Halffmann & Natashia Boland & Stefan Ruzika, 2023. "Analysis of the weighted Tchebycheff weight set decomposition for multiobjective discrete optimization problems," Journal of Global Optimization, Springer, vol. 86(2), pages 417-440, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Przybylski, Anthony & Gandibleux, Xavier, 2017. "Multi-objective branch and bound," European Journal of Operational Research, Elsevier, vol. 260(3), pages 856-872.
    2. Seyyed Amir Babak Rasmi & Ali Fattahi & Metin Türkay, 2021. "SASS: slicing with adaptive steps search method for finding the non-dominated points of tri-objective mixed-integer linear programming problems," Annals of Operations Research, Springer, vol. 296(1), pages 841-876, January.
    3. Enrique Machuca & Lawrence Mandow, 2016. "Lower bound sets for biobjective shortest path problems," Journal of Global Optimization, Springer, vol. 64(1), pages 63-77, January.
    4. Stephan Helfrich & Tyler Perini & Pascal Halffmann & Natashia Boland & Stefan Ruzika, 2023. "Analysis of the weighted Tchebycheff weight set decomposition for multiobjective discrete optimization problems," Journal of Global Optimization, Springer, vol. 86(2), pages 417-440, June.
    5. Britta Schulze & Kathrin Klamroth & Michael Stiglmayr, 2019. "Multi-objective unconstrained combinatorial optimization: a polynomial bound on the number of extreme supported solutions," Journal of Global Optimization, Springer, vol. 74(3), pages 495-522, July.
    6. Özgür Özpeynirci & Murat Köksalan, 2010. "An Exact Algorithm for Finding Extreme Supported Nondominated Points of Multiobjective Mixed Integer Programs," Management Science, INFORMS, vol. 56(12), pages 2302-2315, December.
    7. Soylu, Banu, 2018. "The search-and-remove algorithm for biobjective mixed-integer linear programming problems," European Journal of Operational Research, Elsevier, vol. 268(1), pages 281-299.
    8. Pedro Correia & Luís Paquete & José Rui Figueira, 2021. "Finding multi-objective supported efficient spanning trees," Computational Optimization and Applications, Springer, vol. 78(2), pages 491-528, March.
    9. Weiqiang Shen & Chuanlin Zhang & Xiaona Zhang & Jinglun Shi, 2019. "A fully distributed deployment algorithm for underwater strong k-barrier coverage using mobile sensors," International Journal of Distributed Sensor Networks, , vol. 15(4), pages 15501477198, April.
    10. S. Dutta & S. Acharya & Rajashree Mishra, 2016. "Genetic algorithm based fuzzy stochastic transportation programming problem with continuous random variables," OPSEARCH, Springer;Operational Research Society of India, vol. 53(4), pages 835-872, December.
    11. Zhong, Tao & Young, Rhonda, 2010. "Multiple Choice Knapsack Problem: Example of planning choice in transportation," Evaluation and Program Planning, Elsevier, vol. 33(2), pages 128-137, May.
    12. András Frank, 2005. "On Kuhn's Hungarian Method—A tribute from Hungary," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(1), pages 2-5, February.
    13. Yang, X. Q. & Goh, C. J., 1997. "A method for convex curve approximation," European Journal of Operational Research, Elsevier, vol. 97(1), pages 205-212, February.
    14. Aritra Pal & Hadi Charkhgard, 2019. "A Feasibility Pump and Local Search Based Heuristic for Bi-Objective Pure Integer Linear Programming," INFORMS Journal on Computing, INFORMS, vol. 31(1), pages 115-133, February.
    15. Amit Kumar & Anila Gupta, 2013. "Mehar’s methods for fuzzy assignment problems with restrictions," Fuzzy Information and Engineering, Springer, vol. 5(1), pages 27-44, March.
    16. KIKOMBA KAHUNGU, Michaël & MABELA MAKENGO MATENDO, Rostin & M. NGOIE, Ruffin-Benoît & MAKENGO MBAMBALU, Fréderic & OKITONYUMBE Y.F, Joseph, 2013. "Les fondements mathématiques pour une aide à la décision du réseau de transport aérien : cas de la République Démocratique du Congo [Mathematical Foundation for Air Traffic Network Decision Aid : C," MPRA Paper 68533, University Library of Munich, Germany, revised Mar 2013.
    17. Nisse, Nicolas & Salch, Alexandre & Weber, Valentin, 2023. "Recovery of disrupted airline operations using k-maximum matching in graphs," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1061-1072.
    18. Parvin Ahmadi & Iman Gholampour & Mahmoud Tabandeh, 2018. "Cluster-based sparse topical coding for topic mining and document clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 537-558, September.
    19. Singh, Preetvanti & Saxena, P. K., 2003. "The multiple objective time transportation problem with additional restrictions," European Journal of Operational Research, Elsevier, vol. 146(3), pages 460-476, May.
    20. Pankaj Gupta & Mukesh Mehlawat, 2007. "An algorithm for a fuzzy transportation problem to select a new type of coal for a steel manufacturing unit," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 114-137, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:77:y:2020:i:4:d:10.1007_s10898-020-00898-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.