IDEAS home Printed from https://ideas.repec.org/a/spr/advdac/v12y2018i3d10.1007_s11634-017-0280-3.html
   My bibliography  Save this article

Cluster-based sparse topical coding for topic mining and document clustering

Author

Listed:
  • Parvin Ahmadi

    (Sharif University of Technology)

  • Iman Gholampour

    (Sharif University of Technology)

  • Mahmoud Tabandeh

    (Sharif University of Technology)

Abstract

In this paper, we introduce a document clustering method based on Sparse Topical Coding, called Cluster-based Sparse Topical Coding. Topic modeling is capable of improving textual document clustering by describing documents via bag-of-words models and projecting them into a topic space. The latent semantic descriptions derived by the topic model can be utilized as features in a clustering process. In our proposed method, document clustering and topic modeling are integrated in a unified framework in order to achieve the highest performance. This framework includes Sparse Topical Coding, which is responsible for topic mining, and K-means that discovers the latent clusters in documents collection. Experimental results on widely-used datasets show that our proposed method significantly outperforms the traditional and other topic model based clustering methods. Our method achieves from 4 to 39% improvement in clustering accuracy and from 2% to more than 44% improvement in normalized mutual information.

Suggested Citation

  • Parvin Ahmadi & Iman Gholampour & Mahmoud Tabandeh, 2018. "Cluster-based sparse topical coding for topic mining and document clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 537-558, September.
  • Handle: RePEc:spr:advdac:v:12:y:2018:i:3:d:10.1007_s11634-017-0280-3
    DOI: 10.1007/s11634-017-0280-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11634-017-0280-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11634-017-0280-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Teh, Yee Whye & Jordan, Michael I. & Beal, Matthew J. & Blei, David M., 2006. "Hierarchical Dirichlet Processes," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1566-1581, December.
    2. H. W. Kuhn, 1955. "The Hungarian method for the assignment problem," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 2(1‐2), pages 83-97, March.
    3. Jean-Charles Lamirel, 2012. "A new approach for automatizing the analysis of research topics dynamics: application to optoelectronics research," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(1), pages 151-166, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karina Gibert & Yaroslav Hernandez-Potiomkin, 2023. "A Unified Formal Framework for Factorial and Probabilistic Topic Modelling," Mathematics, MDPI, vol. 11(20), pages 1-27, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weiqiang Shen & Chuanlin Zhang & Xiaona Zhang & Jinglun Shi, 2019. "A fully distributed deployment algorithm for underwater strong k-barrier coverage using mobile sensors," International Journal of Distributed Sensor Networks, , vol. 15(4), pages 15501477198, April.
    2. Redivo, Edoardo & Nguyen, Hien D. & Gupta, Mayetri, 2020. "Bayesian clustering of skewed and multimodal data using geometric skewed normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    3. András Frank, 2005. "On Kuhn's Hungarian Method—A tribute from Hungary," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(1), pages 2-5, February.
    4. Jin, Xin & Maheu, John M., 2016. "Bayesian semiparametric modeling of realized covariance matrices," Journal of Econometrics, Elsevier, vol. 192(1), pages 19-39.
    5. Amit Kumar & Anila Gupta, 2013. "Mehar’s methods for fuzzy assignment problems with restrictions," Fuzzy Information and Engineering, Springer, vol. 5(1), pages 27-44, March.
    6. Nisse, Nicolas & Salch, Alexandre & Weber, Valentin, 2023. "Recovery of disrupted airline operations using k-maximum matching in graphs," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1061-1072.
    7. Jeffrey L. Furman & Florenta Teodoridis, 2020. "Automation, Research Technology, and Researchers’ Trajectories: Evidence from Computer Science and Electrical Engineering," Organization Science, INFORMS, vol. 31(2), pages 330-354, March.
    8. Xin Jin & John M. Maheu & Qiao Yang, 2019. "Bayesian parametric and semiparametric factor models for large realized covariance matrices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(5), pages 641-660, August.
    9. Bachtenkirch, David & Bock, Stefan, 2022. "Finding efficient make-to-order production and batch delivery schedules," European Journal of Operational Research, Elsevier, vol. 297(1), pages 133-152.
    10. Csereklyei, Zsuzsanna & Anantharama, Nandini & Kallies, Anne, 2021. "Electricity market transitions in Australia: Evidence using model-based clustering," Energy Economics, Elsevier, vol. 103(C).
    11. Shu-Ping Shi & Yong Song, 2012. "Identifying Speculative Bubbles with an Infinite Hidden Markov Model," Working Paper series 26_12, Rimini Centre for Economic Analysis.
    12. Lu Huang & Xiang Chen & Yi Zhang & Changtian Wang & Xiaoli Cao & Jiarun Liu, 2022. "Identification of topic evolution: network analytics with piecewise linear representation and word embedding," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5353-5383, September.
    13. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    14. Omar Zatarain & Jesse Yoe Rumbo-Morales & Silvia Ramos-Cabral & Gerardo Ortíz-Torres & Felipe d. J. Sorcia-Vázquez & Iván Guillén-Escamilla & Juan Carlos Mixteco-Sánchez, 2023. "A Method for Perception and Assessment of Semantic Textual Similarities in English," Mathematics, MDPI, vol. 11(12), pages 1-20, June.
    15. Jin, Xin & Maheu, John M. & Yang, Qiao, 2022. "Infinite Markov pooling of predictive distributions," Journal of Econometrics, Elsevier, vol. 228(2), pages 302-321.
    16. Chenchen Ma & Jing Ouyang & Gongjun Xu, 2023. "Learning Latent and Hierarchical Structures in Cognitive Diagnosis Models," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 175-207, March.
    17. Winker, Peter, 2023. "Visualizing Topic Uncertainty in Topic Modelling," VfS Annual Conference 2023 (Regensburg): Growth and the "sociale Frage" 277584, Verein für Socialpolitik / German Economic Association.
    18. Thomas R. W. Oliver & Lia Chappell & Rashesh Sanghvi & Lauren Deighton & Naser Ansari-Pour & Stefan C. Dentro & Matthew D. Young & Tim H. H. Coorens & Hyunchul Jung & Tim Butler & Matthew D. C. Nevill, 2022. "Clonal diversification and histogenesis of malignant germ cell tumours," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    19. Gustaf Bellstam & Sanjai Bhagat & J. Anthony Cookson, 2021. "A Text-Based Analysis of Corporate Innovation," Management Science, INFORMS, vol. 67(7), pages 4004-4031, July.
    20. Tran Hoang Hai, 2020. "Estimation of volatility causality in structural autoregressions with heteroskedasticity using independent component analysis," Statistical Papers, Springer, vol. 61(1), pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:12:y:2018:i:3:d:10.1007_s11634-017-0280-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.