IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v69y2017i4d10.1007_s10898-017-0544-7.html
   My bibliography  Save this article

On the convergence rate issues of general Markov search for global minimum

Author

Listed:
  • Dawid Tarłowski

    (Jagiellonian University)

Abstract

This paper focuses on the convergence rate problem of general Markov search for global minimum. Many of existing methods are designed for overcoming a very hard problem which is how to efficiently localize and approximate the global minimum of the multimodal function f while all information which can be used are the f-values evaluated for generated points. Because such methods use poor information on f, the following problem may occur: the closer to the optimum, the harder to generate a “better” (in sense of the cost function) state. This paper explores this issue on theoretical basis. To do so the concept of lazy convergence for a globally convergent method is introduced: a globally convergent method is called lazy if the probability of generating a better state from one step to another goes to zero with time. Such issue is the cause of very undesired convergence properties. This paper shows when an optimization method has to be lazy and the presented general results cover, in particular, the class of simulated annealing algorithms and monotone random search. Furthermore, some attention is put on accelerated random search and evolution strategies.

Suggested Citation

  • Dawid Tarłowski, 2017. "On the convergence rate issues of general Markov search for global minimum," Journal of Global Optimization, Springer, vol. 69(4), pages 869-888, December.
  • Handle: RePEc:spr:jglopt:v:69:y:2017:i:4:d:10.1007_s10898-017-0544-7
    DOI: 10.1007/s10898-017-0544-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-017-0544-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-017-0544-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luis Rios & Nikolaos Sahinidis, 2013. "Derivative-free optimization: a review of algorithms and comparison of software implementations," Journal of Global Optimization, Springer, vol. 56(3), pages 1247-1293, July.
    2. Anatoly Zhigljavsky & Antanas Žilinskas, 2008. "Stochastic Global Optimization," Springer Optimization and Its Applications, Springer, number 978-0-387-74740-8, September.
    3. M. Locatelli, 2001. "Convergence and first hitting time of simulated annealing algorithms for continuous global optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 54(2), pages 171-199, December.
    4. Mathieu Gerber & Luke Bornn, 2017. "Improving simulated annealing through derandomization," Journal of Global Optimization, Springer, vol. 68(1), pages 189-217, May.
    5. R. L. Yang, 2000. "Convergence of the Simulated Annealing Algorithm for Continuous Global Optimization," Journal of Optimization Theory and Applications, Springer, vol. 104(3), pages 691-716, March.
    6. Zheng Peng & Donghua Wu & Wenxing Zhu, 2016. "The robust constant and its applications in random global search for unconstrained global optimization," Journal of Global Optimization, Springer, vol. 64(3), pages 469-482, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kvasov, Dmitri E. & Mukhametzhanov, Marat S., 2018. "Metaheuristic vs. deterministic global optimization algorithms: The univariate case," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 245-259.
    2. Jonas Bjerg Thomsen & Francesco Ferri & Jens Peter Kofoed & Kevin Black, 2018. "Cost Optimization of Mooring Solutions for Large Floating Wave Energy Converters," Energies, MDPI, vol. 11(1), pages 1-23, January.
    3. Andrey Pepelyshev & Anatoly Zhigljavsky & Antanas Žilinskas, 2018. "Performance of global random search algorithms for large dimensions," Journal of Global Optimization, Springer, vol. 71(1), pages 57-71, May.
    4. Rubenthaler, Sylvain & Rydén, Tobias & Wiktorsson, Magnus, 2009. "Fast simulated annealing in with an application to maximum likelihood estimation in state-space models," Stochastic Processes and their Applications, Elsevier, vol. 119(6), pages 1912-1931, June.
    5. Gabriela Simonet & Julie Subervie & Driss Ezzine-De-Blas & Marina Cromberg & Amy Duchelle, 2015. "Paying smallholders not to cut down the amazon forest: impact evaluation of a REDD+ pilot project," Working Papers 1514, Chaire Economie du climat.
    6. Somayeh Moazeni & Warren B. Powell & Boris Defourny & Belgacem Bouzaiene-Ayari, 2017. "Parallel Nonstationary Direct Policy Search for Risk-Averse Stochastic Optimization," INFORMS Journal on Computing, INFORMS, vol. 29(2), pages 332-349, May.
    7. Weitao Sun & Yuan Dong, 2011. "Study of multiscale global optimization based on parameter space partition," Journal of Global Optimization, Springer, vol. 49(1), pages 149-172, January.
    8. Jakubik, Johannes & Binding, Adrian & Feuerriegel, Stefan, 2021. "Directed particle swarm optimization with Gaussian-process-based function forecasting," European Journal of Operational Research, Elsevier, vol. 295(1), pages 157-169.
    9. Gerber, Mathieu & Bornn, Luke, 2018. "Convergence results for a class of time-varying simulated annealing algorithms," Stochastic Processes and their Applications, Elsevier, vol. 128(4), pages 1073-1094.
    10. Vasiliy V. Grigoriev & Petr N. Vabishchevich, 2021. "Bayesian Estimation of Adsorption and Desorption Parameters for Pore Scale Transport," Mathematics, MDPI, vol. 9(16), pages 1-16, August.
    11. Christophe Gouel & Nicolas Legrand, 2017. "Estimating the Competitive Storage Model with Trending Commodity Prices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(4), pages 744-763, June.
    12. Zhao, Jake, 2020. "Accounting for the corporate cash increase," European Economic Review, Elsevier, vol. 123(C).
    13. Hannes Schwarz & Valentin Bertsch & Wolf Fichtner, 2018. "Two-stage stochastic, large-scale optimization of a decentralized energy system: a case study focusing on solar PV, heat pumps and storage in a residential quarter," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(1), pages 265-310, January.
    14. Jonathan Gillard & Anatoly Zhigljavsky, 2013. "Optimization challenges in the structured low rank approximation problem," Journal of Global Optimization, Springer, vol. 57(3), pages 733-751, November.
    15. Breitmoser, Yves & Valasek, Justin, 2017. "A rationale for unanimity in committees," Discussion Papers, Research Unit: Economics of Change SP II 2017-308, WZB Berlin Social Science Center.
    16. Krese, Gorazd & Lampret, Žiga & Butala, Vincenc & Prek, Matjaž, 2018. "Determination of a Building's balance point temperature as an energy characteristic," Energy, Elsevier, vol. 165(PB), pages 1034-1049.
    17. Tavakol Aghaei, Vahid & Ağababaoğlu, Arda & Bawo, Biram & Naseradinmousavi, Peiman & Yıldırım, Sinan & Yeşilyurt, Serhat & Onat, Ahmet, 2023. "Energy optimization of wind turbines via a neural control policy based on reinforcement learning Markov chain Monte Carlo algorithm," Applied Energy, Elsevier, vol. 341(C).
    18. Andrzej Wędzik & Tomasz Siewierski & Michał Szypowski, 2019. "The Use of Black-Box Optimization Method for Determination of the Bus Connection Capacity in Electric Power Grid," Energies, MDPI, vol. 13(1), pages 1-21, December.
    19. Linas Stripinis & Remigijus Paulavičius, 2023. "Novel Algorithm for Linearly Constrained Derivative Free Global Optimization of Lipschitz Functions," Mathematics, MDPI, vol. 11(13), pages 1-19, June.
    20. Pál, László & Sándor, Zsolt, 2023. "Comparing procedures for estimating random coefficient logit demand models with a special focus on obtaining global optima," International Journal of Industrial Organization, Elsevier, vol. 88(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:69:y:2017:i:4:d:10.1007_s10898-017-0544-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.