IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v69y2017i1d10.1007_s10898-017-0496-y.html
   My bibliography  Save this article

GOSAC: global optimization with surrogate approximation of constraints

Author

Listed:
  • Juliane Müller

    (Lawrence Berkeley National Laboratory, Computational Research Division, Center for Computational Sciences and Engineering)

  • Joshua D. Woodbury

    (Swiss Re)

Abstract

We introduce GOSAC, a global optimization algorithm for problems with computationally expensive black-box constraints and computationally cheap objective functions. The variables may be continuous, integer, or mixed-integer. GOSAC uses a two-phase optimization approach. The first phase aims at finding a feasible point by solving a multi-objective optimization problem in which the constraints are minimized simultaneously. The second phase aims at improving the feasible solution. In both phases, we use cubic radial basis function surrogate models to approximate the computationally expensive constraints. We iteratively select sample points by minimizing the computationally cheap objective function subject to the constraint function approximations. We assess GOSAC’s efficiency on computationally cheap test problems with integer, mixed-integer, and continuous variables and two environmental applications. We compare GOSAC to NOMAD and a genetic algorithm (GA). The results of the numerical experiments show that for a given budget of allowed expensive constraint evaluations, GOSAC finds better feasible solutions more efficiently than NOMAD and GA for most benchmark problems and both applications. GOSAC finds feasible solutions with a higher probability than NOMAD and GOSAC.

Suggested Citation

  • Juliane Müller & Joshua D. Woodbury, 2017. "GOSAC: global optimization with surrogate approximation of constraints," Journal of Global Optimization, Springer, vol. 69(1), pages 117-136, September.
  • Handle: RePEc:spr:jglopt:v:69:y:2017:i:1:d:10.1007_s10898-017-0496-y
    DOI: 10.1007/s10898-017-0496-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-017-0496-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-017-0496-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Regis, Rommel G. & Shoemaker, Christine A., 2007. "Parallel radial basis function methods for the global optimization of expensive functions," European Journal of Operational Research, Elsevier, vol. 182(2), pages 514-535, October.
    2. Giampaolo Liuzzi & Stefano Lucidi & Francesco Rinaldi, 2015. "Derivative-Free Methods for Mixed-Integer Constrained Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 164(3), pages 933-965, March.
    3. Juliane Müller & Christine Shoemaker, 2014. "Influence of ensemble surrogate models and sampling strategy on the solution quality of algorithms for computationally expensive black-box global optimization problems," Journal of Global Optimization, Springer, vol. 60(2), pages 123-144, October.
    4. Rommel G. Regis & Christine A. Shoemaker, 2007. "A Stochastic Radial Basis Function Method for the Global Optimization of Expensive Functions," INFORMS Journal on Computing, INFORMS, vol. 19(4), pages 497-509, November.
    5. Rommel Regis & Christine Shoemaker, 2013. "A quasi-multistart framework for global optimization of expensive functions using response surface models," Journal of Global Optimization, Springer, vol. 56(4), pages 1719-1753, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juliane Müller & Jangho Park & Reetik Sahu & Charuleka Varadharajan & Bhavna Arora & Boris Faybishenko & Deborah Agarwal, 2021. "Surrogate optimization of deep neural networks for groundwater predictions," Journal of Global Optimization, Springer, vol. 81(1), pages 203-231, September.
    2. Belmiro P. M. Duarte & Anthony C. Atkinson & Satya P. Singh & Marco S. Reis, 2023. "Optimal design of experiments for hypothesis testing on ordered treatments via intersection-union tests," Statistical Papers, Springer, vol. 64(2), pages 587-615, April.
    3. Juliane Müller & Marcus Day, 2019. "Surrogate Optimization of Computationally Expensive Black-Box Problems with Hidden Constraints," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 689-702, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boukouvala, Fani & Misener, Ruth & Floudas, Christodoulos A., 2016. "Global optimization advances in Mixed-Integer Nonlinear Programming, MINLP, and Constrained Derivative-Free Optimization, CDFO," European Journal of Operational Research, Elsevier, vol. 252(3), pages 701-727.
    2. Fani Boukouvala & M. M. Faruque Hasan & Christodoulos A. Floudas, 2017. "Global optimization of general constrained grey-box models: new method and its application to constrained PDEs for pressure swing adsorption," Journal of Global Optimization, Springer, vol. 67(1), pages 3-42, January.
    3. Juliane Müller, 2017. "SOCEMO: Surrogate Optimization of Computationally Expensive Multiobjective Problems," INFORMS Journal on Computing, INFORMS, vol. 29(4), pages 581-596, November.
    4. Zhe Zhou & Fusheng Bai, 2018. "An adaptive framework for costly black-box global optimization based on radial basis function interpolation," Journal of Global Optimization, Springer, vol. 70(4), pages 757-781, April.
    5. Taimoor Akhtar & Christine Shoemaker, 2016. "Multi objective optimization of computationally expensive multi-modal functions with RBF surrogates and multi-rule selection," Journal of Global Optimization, Springer, vol. 64(1), pages 17-32, January.
    6. Tipaluck Krityakierne & Taimoor Akhtar & Christine A. Shoemaker, 2016. "SOP: parallel surrogate global optimization with Pareto center selection for computationally expensive single objective problems," Journal of Global Optimization, Springer, vol. 66(3), pages 417-437, November.
    7. Juliane Müller & Marcus Day, 2019. "Surrogate Optimization of Computationally Expensive Black-Box Problems with Hidden Constraints," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 689-702, October.
    8. Juliane Müller & Christine Shoemaker & Robert Piché, 2014. "SO-I: a surrogate model algorithm for expensive nonlinear integer programming problems including global optimization applications," Journal of Global Optimization, Springer, vol. 59(4), pages 865-889, August.
    9. Liu, Haoxiang & Wang, David Z.W., 2017. "Locating multiple types of charging facilities for battery electric vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 30-55.
    10. Nicolau Andrés-Thió & Mario Andrés Muñoz & Kate Smith-Miles, 2022. "Bifidelity Surrogate Modelling: Showcasing the Need for New Test Instances," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3007-3022, November.
    11. Liu, Haoxiang & Szeto, W.Y. & Long, Jiancheng, 2019. "Bike network design problem with a path-size logit-based equilibrium constraint: Formulation, global optimization, and matheuristic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 284-307.
    12. Krityakierne, Tipaluck & Baowan, Duangkamon, 2020. "Aggregated GP-based Optimization for Contaminant Source Localization," Operations Research Perspectives, Elsevier, vol. 7(C).
    13. Logan Mathesen & Giulia Pedrielli & Szu Hui Ng & Zelda B. Zabinsky, 2021. "Stochastic optimization with adaptive restart: a framework for integrated local and global learning," Journal of Global Optimization, Springer, vol. 79(1), pages 87-110, January.
    14. Richard T. Lyons & Richard C. Peralta & Partha Majumder, 2020. "Comparing Single-Objective Optimization Protocols for Calibrating the Birds Nest Aquifer Model—A Problem Having Multiple Local Optima," IJERPH, MDPI, vol. 17(3), pages 1-10, January.
    15. Juliane Müller & Christine Shoemaker, 2014. "Influence of ensemble surrogate models and sampling strategy on the solution quality of algorithms for computationally expensive black-box global optimization problems," Journal of Global Optimization, Springer, vol. 60(2), pages 123-144, October.
    16. Chen, Mingjie & Tompson, Andrew F.B. & Mellors, Robert J. & Abdalla, Osman, 2015. "An efficient optimization of well placement and control for a geothermal prospect under geological uncertainty," Applied Energy, Elsevier, vol. 137(C), pages 352-363.
    17. Belmiro P. M. Duarte & Anthony C. Atkinson & Satya P. Singh & Marco S. Reis, 2023. "Optimal design of experiments for hypothesis testing on ordered treatments via intersection-union tests," Statistical Papers, Springer, vol. 64(2), pages 587-615, April.
    18. Charles Audet & Edward Hallé-Hannan & Sébastien Le Digabel, 2023. "A General Mathematical Framework for Constrained Mixed-variable Blackbox Optimization Problems with Meta and Categorical Variables," SN Operations Research Forum, Springer, vol. 4(1), pages 1-37, March.
    19. Siem, A.Y.D. & den Hertog, D., 2007. "Kriging Models That Are Robust With Respect to Simulation Errors," Other publications TiSEM fe73dc8b-20d6-4f50-95eb-f, Tilburg University, School of Economics and Management.
    20. Hau T. Mai & Jaewook Lee & Joowon Kang & H. Nguyen-Xuan & Jaehong Lee, 2022. "An Improved Blind Kriging Surrogate Model for Design Optimization Problems," Mathematics, MDPI, vol. 10(16), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:69:y:2017:i:1:d:10.1007_s10898-017-0496-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.