IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v32y2016i3d10.1007_s10878-015-9892-8.html
   My bibliography  Save this article

Solving constrained optimization problems by solution-based decomposition search

Author

Listed:
  • Amine Lamine

    (University of Gabès)

  • Mahdi Khemakhem

    (University of Sfax)

  • Brahim Hnich

    (Taif University)

  • Habib Chabchoub

    (University of Sfax)

Abstract

Solving constrained optimization problems (COPs) is a challenging task. In this paper we present a new strategy for solving COPs called solve and decompose (or $$ S \& D$$ S & D for short). The proposed strategy is a systematic iterative depth-first strategy that is based on problem decomposition. $$ S \& D$$ S & D uses a feasible solution of the COP, found by any exact method, to further decompose the original problem into a bounded number of subproblems which are considerably smaller in size. It also uses the value of the feasible solution as a bound that we add to the created subproblems in order to strengthen the cost-based filtering. Furthermore, the feasible solution is exploited in order to create subproblems that have more promise in finding better solutions which are explored in a depth-first manner. The whole process is repeated until we reach a specified depth where we do not decompose the subproblems anymore but we solve them to optimality using any exact method like Branch and Bound. Our initial results on two benchmark problems show that $$ S \& D$$ S & D may reach improvements of up to three orders of magnitude in terms of runtime when compared to Branch and Bound.

Suggested Citation

  • Amine Lamine & Mahdi Khemakhem & Brahim Hnich & Habib Chabchoub, 2016. "Solving constrained optimization problems by solution-based decomposition search," Journal of Combinatorial Optimization, Springer, vol. 32(3), pages 672-695, October.
  • Handle: RePEc:spr:jcomop:v:32:y:2016:i:3:d:10.1007_s10878-015-9892-8
    DOI: 10.1007/s10878-015-9892-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-015-9892-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-015-9892-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vipul Jain & Ignacio E. Grossmann, 2001. "Algorithms for Hybrid MILP/CP Models for a Class of Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 13(4), pages 258-276, November.
    2. E. L. Lawler & D. E. Wood, 1966. "Branch-and-Bound Methods: A Survey," Operations Research, INFORMS, vol. 14(4), pages 699-719, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kezong Tang & Xiong-Fei Wei & Yuan-Hao Jiang & Zi-Wei Chen & Lihua Yang, 2023. "An Adaptive Ant Colony Optimization for Solving Large-Scale Traveling Salesman Problem," Mathematics, MDPI, vol. 11(21), pages 1-26, October.
    2. Weiqiang Pan & Zhilong Shan & Ting Chen & Fangjiong Chen & Jing Feng, 2016. "Optimal pilot design for OFDM systems with non-contiguous subcarriers based on semi-definite programming," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 63(2), pages 297-305, October.
    3. Fox, B. L. & Lenstra, J. K. & Rinnooy Kan, A. H. G. & Schrage, L. E., 1977. "Branching From The Largest Upper Bound: Folklore And Facts," Econometric Institute Archives 272158, Erasmus University Rotterdam.
    4. Roberto Rossi & S. Armagan Tarim & Brahim Hnich & Steven Prestwich & Semra Karacaer, 2010. "Scheduling internal audit activities: a stochastic combinatorial optimization problem," Journal of Combinatorial Optimization, Springer, vol. 19(3), pages 325-346, April.
    5. Riise, Atle & Mannino, Carlo & Lamorgese, Leonardo, 2016. "Recursive logic-based Benders’ decomposition for multi-mode outpatient scheduling," European Journal of Operational Research, Elsevier, vol. 255(3), pages 719-728.
    6. Notte, Gastón & Pedemonte, Martín & Cancela, Héctor & Chilibroste, Pablo, 2016. "Resource allocation in pastoral dairy production systems: Evaluating exact and genetic algorithms approaches," Agricultural Systems, Elsevier, vol. 148(C), pages 114-123.
    7. Castro, Pedro M. & Oliveira, José F., 2011. "Scheduling inspired models for two-dimensional packing problems," European Journal of Operational Research, Elsevier, vol. 215(1), pages 45-56, November.
    8. Juan F. R. Herrera & José M. G. Salmerón & Eligius M. T. Hendrix & Rafael Asenjo & Leocadio G. Casado, 2017. "On parallel Branch and Bound frameworks for Global Optimization," Journal of Global Optimization, Springer, vol. 69(3), pages 547-560, November.
    9. Gautam Mitra & Frank Ellison & Alan Scowcroft, 2007. "Quadratic programming for portfolio planning: Insights into algorithmic and computational issues Part II — Processing of portfolio planning models with discrete constraints," Journal of Asset Management, Palgrave Macmillan, vol. 8(4), pages 249-258, November.
    10. Rahmaniani, Ragheb & Crainic, Teodor Gabriel & Gendreau, Michel & Rei, Walter, 2017. "The Benders decomposition algorithm: A literature review," European Journal of Operational Research, Elsevier, vol. 259(3), pages 801-817.
    11. Li, Haitao & Womer, Keith, 2012. "Optimizing the supply chain configuration for make-to-order manufacturing," European Journal of Operational Research, Elsevier, vol. 221(1), pages 118-128.
    12. Efrat Taig & Ohad Ben-Shahar, 2019. "Gradient Surfing: A New Deterministic Approach for Low-Dimensional Global Optimization," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 855-878, March.
    13. Fan Yang & Roel Leus, 2021. "Scheduling hybrid flow shops with time windows," Journal of Heuristics, Springer, vol. 27(1), pages 133-158, April.
    14. Inkyung Sung & Taesik Lee, 2018. "Scenario-based approach for the ambulance location problem with stochastic call arrivals under a dispatching policy," Flexible Services and Manufacturing Journal, Springer, vol. 30(1), pages 153-170, June.
    15. Ekart, Aniko & Nemeth, S. Z., 2005. "Stability analysis of tree structured decision functions," European Journal of Operational Research, Elsevier, vol. 160(3), pages 676-695, February.
    16. Rosato, Paolo & Stellin, Giuseppe, 1995. "MULTI CRITERIA ANALYSIS IN FARM MANAGEMENT FOLLOWING THE COMMON AGRICULTURAL POLICY REFORM: AN APPLICATION OF MULTI-OBJECTIVE INTEGER LINEAR PROGRAMMING; Proceedings of the 4th Minnesota Padova Confer," Working Papers 14414, University of Minnesota, Center for International Food and Agricultural Policy.
    17. Jiancheng Long & Wai Yuen Szeto, 2019. "Link-Based System Optimum Dynamic Traffic Assignment Problems in General Networks," Operations Research, INFORMS, vol. 67(1), pages 167-182, January.
    18. Wang, Lizhi & Nikouei Mehr, Maryam, 2019. "An optimization approach to epistasis detection," European Journal of Operational Research, Elsevier, vol. 274(3), pages 1069-1076.
    19. Kyoungmi Hwang & Dohyun Kim & Kyungsik Lee & Chungmok Lee & Sungsoo Park, 2017. "Embedded variable selection method using signomial classification," Annals of Operations Research, Springer, vol. 254(1), pages 89-109, July.
    20. de Mast, Jeroen, 2011. "The tactical use of constraints and structure in diagnostic problem solving," Omega, Elsevier, vol. 39(6), pages 702-709, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:32:y:2016:i:3:d:10.1007_s10878-015-9892-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.