IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v2y1998i3d10.1023_a1009798010579.html
   My bibliography  Save this article

Approximation Algorithms for Certain Network Improvement Problems

Author

Listed:
  • Sven O. Krumke

    (Konrad-Zuse-Zentrum für Informationstechnik Berlin)

  • Madhav V. Marathe

    (Madhav V. Marathe, Los Alamos National Laboratory)

  • Hartmut Noltemeier

    (University of Würzburg)

  • R. Ravi

    (Carnegie Mellon University)

  • S. S. Ravi

    (University at Albany–SUNY)

Abstract

We study budget constrained network upgrading problems. Such problems aim at finding optimal strategies for improving a network under some cost measure subject to certain budget constraints. Given an edge weighted graph G = (V, E), in the edge based upgrading model, it is assumed that each edge e of the given network also has an associated function ce (t) that specifies the cost of upgrading the edge by an amount t. A reduction strategy specifies for each edge e the amount by which the length ℓ(e) is to be reduced. In the node based upgrading model, a node v can be upgraded at an expense of c(v). Such an upgrade reduces the delay of each edge incident on v. For a given budget B, the goal is to find an improvement strategy such that the total cost of reduction is at most the given budget B and the cost of a subgraph (e.g. minimum spanning tree) under the modified edge lengths is the best over all possible strategies which obey the budget constraint. After providing a brief overview of the models and definitions of the various problems considered, we present several new results on the complexity and approximability of network improvement problems.

Suggested Citation

  • Sven O. Krumke & Madhav V. Marathe & Hartmut Noltemeier & R. Ravi & S. S. Ravi, 1998. "Approximation Algorithms for Certain Network Improvement Problems," Journal of Combinatorial Optimization, Springer, vol. 2(3), pages 257-288, September.
  • Handle: RePEc:spr:jcomop:v:2:y:1998:i:3:d:10.1023_a:1009798010579
    DOI: 10.1023/A:1009798010579
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1009798010579
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1009798010579?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Refael Hassin, 1992. "Approximation Schemes for the Restricted Shortest Path Problem," Mathematics of Operations Research, INFORMS, vol. 17(1), pages 36-42, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Esmaeil Afrashteh & Behrooz Alizadeh & Fahimeh Baroughi, 2020. "Optimal approaches for upgrading selective obnoxious p-median location problems on tree networks," Annals of Operations Research, Springer, vol. 289(2), pages 153-172, June.
    2. Burkard, Rainer E. & Lin, Yixun & Zhang, Jianzhong, 2004. "Weight reduction problems with certain bottleneck objectives," European Journal of Operational Research, Elsevier, vol. 153(1), pages 191-199, February.
    3. Maya Duque, Pablo A. & Coene, Sofie & Goos, Peter & Sörensen, Kenneth & Spieksma, Frits, 2013. "The accessibility arc upgrading problem," European Journal of Operational Research, Elsevier, vol. 224(3), pages 458-465.
    4. Guan, Xiucui & Zhang, Jianzhong, 2007. "Improving multicut in directed trees by upgrading nodes," European Journal of Operational Research, Elsevier, vol. 183(3), pages 971-980, December.
    5. Guan, Xiucui & Zhang, Jianzhong, 2006. "A class of node based bottleneck improvement problems," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1540-1552, November.
    6. Michael Holzhauser & Sven O. Krumke & Clemens Thielen, 2016. "Budget-constrained minimum cost flows," Journal of Combinatorial Optimization, Springer, vol. 31(4), pages 1720-1745, May.
    7. Clemens Heuberger, 2004. "Inverse Combinatorial Optimization: A Survey on Problems, Methods, and Results," Journal of Combinatorial Optimization, Springer, vol. 8(3), pages 329-361, September.
    8. Elisabeth Gassner, 2009. "A game-theoretic approach for downgrading the 1-median in the plane with Manhattan metric," Annals of Operations Research, Springer, vol. 172(1), pages 393-404, November.
    9. Gassner, Elisabeth, 2009. "Up- and downgrading the 1-center in a network," European Journal of Operational Research, Elsevier, vol. 198(2), pages 370-377, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Esaignani Selvarajah & Rui Zhang, 2014. "Supply chain scheduling to minimize holding costs with outsourcing," Annals of Operations Research, Springer, vol. 217(1), pages 479-490, June.
    2. Randeep Bhatia & Sudipto Guha & Samir Khuller & Yoram J. Sussmann, 1998. "Facility Location with Dynamic Distance Functions," Journal of Combinatorial Optimization, Springer, vol. 2(3), pages 199-217, September.
    3. Geng, Zhichao & Yuan, Jinjiang, 2023. "Single-machine scheduling of multiple projects with controllable processing times," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1074-1090.
    4. Boaz Golany & Moshe Kress & Michal Penn & Uriel G. Rothblum, 2012. "Network Optimization Models for Resource Allocation in Developing Military Countermeasures," Operations Research, INFORMS, vol. 60(1), pages 48-63, February.
    5. Xie, Chi & Travis Waller, S., 2012. "Parametric search and problem decomposition for approximating Pareto-optimal paths," Transportation Research Part B: Methodological, Elsevier, vol. 46(8), pages 1043-1067.
    6. Faramroze G. Engineer & George L. Nemhauser & Martin W. P. Savelsbergh, 2011. "Dynamic Programming-Based Column Generation on Time-Expanded Networks: Application to the Dial-a-Flight Problem," INFORMS Journal on Computing, INFORMS, vol. 23(1), pages 105-119, February.
    7. Buu-Chau Truong & Kim-Hung Pho & Van-Buol Nguyen & Bui Anh Tuan & Wing-Keung Wong, 2019. "Graph Theory And Environmental Algorithmic Solutions To Assign Vehicles Application To Garbage Collection In Vietnam," Advances in Decision Sciences, Asia University, Taiwan, vol. 23(3), pages 1-35, September.
    8. Michael Holzhauser & Sven O. Krumke, 2018. "A generalized approximation framework for fractional network flow and packing problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 87(1), pages 19-50, February.
    9. Luigi Di Puglia Pugliese & Francesca Guerriero, 2013. "A Reference Point Approach for the Resource Constrained Shortest Path Problems," Transportation Science, INFORMS, vol. 47(2), pages 247-265, May.
    10. Chen, Xujin & Hu, Jie & Hu, Xiaodong, 2009. "A polynomial solvable minimum risk spanning tree problem with interval data," European Journal of Operational Research, Elsevier, vol. 198(1), pages 43-46, October.
    11. Jenkins , Alan, 2005. "Performance Appraisal Research: A Critical Review of Work on “The Social Context and Politics of Appraisal”," ESSEC Working Papers DR 05004, ESSEC Research Center, ESSEC Business School.
    12. Junran Lichen & Jianping Li & Ko-Wei Lih & Xingxing Yu, 0. "Approximation algorithms for constructing required subgraphs using stock pieces of fixed length," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-22.
    13. Vittorio Bilò & Ioannis Caragiannis & Angelo Fanelli & Michele Flammini & Gianpiero Monaco, 2017. "Simple Greedy Algorithms for Fundamental Multidimensional Graph Problems," Post-Print hal-02089412, HAL.
    14. Jianping Li & Weidong Li & Junran Lichen, 2014. "The subdivision-constrained routing requests problem," Journal of Combinatorial Optimization, Springer, vol. 27(1), pages 152-163, January.
    15. Mattia, Sara & Rossi, Fabrizio & Servilio, Mara & Smriglio, Stefano, 2017. "Staffing and scheduling flexible call centers by two-stage robust optimization," Omega, Elsevier, vol. 72(C), pages 25-37.
    16. Wei Ding & Guoliang Xue, 2014. "Minimum diameter cost-constrained Steiner trees," Journal of Combinatorial Optimization, Springer, vol. 27(1), pages 32-48, January.
    17. Sedeño-Noda, Antonio & Alonso-Rodríguez, Sergio, 2015. "An enhanced K-SP algorithm with pruning strategies to solve the constrained shortest path problem," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 602-618.
    18. Arne Herzel & Stefan Ruzika & Clemens Thielen, 2021. "Approximation Methods for Multiobjective Optimization Problems: A Survey," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1284-1299, October.
    19. Goldberg, Noam & Poss, Michael, 2020. "Maximum probabilistic all-or-nothing paths," European Journal of Operational Research, Elsevier, vol. 283(1), pages 279-289.
    20. Alexandre Dolgui & Mikhail Y. Kovalyov & Alain Quilliot, 2018. "Simple paths with exact and forbidden lengths," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(1), pages 78-85, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:2:y:1998:i:3:d:10.1023_a:1009798010579. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.