IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v28y2023i2d10.1007_s13253-022-00518-x.html
   My bibliography  Save this article

Saving Storage in Climate Ensembles: A Model-Based Stochastic Approach

Author

Listed:
  • Huang Huang

    (King Abdullah University of Science and Technology)

  • Stefano Castruccio

    (University of Notre Dame)

  • Allison H. Baker

    (National Center for Atmospheric Research)

  • Marc G. Genton

    (King Abdullah University of Science and Technology)

Abstract

While climate models are an invaluable tool for increasing our understanding and therefore, the predictability of the Earth’s system for decades, their increase in complexity and resolution has put a considerable, growing strain on the computational resources of research centers and institutions worldwide. The statistics community has a long history of developing stochastic models as a means to save computational time, but the emergence of storage as an additional cost for climate investigations has prompted a reformulation of the aim of statistical models in model-based environmental science. Can stochastic approximations be useful as a mechanism for saving both computational time and storage? We focus on a collection of simulations from a climate model and propose several statistical models of increasing complexity. By analyzing and discussing the associated costs for each model, we demonstrate how computation and storage are closely intertwined, and how a statistical model of increasing complexity is justified only to the extent that information at a fine spatial and/or temporal scale is sought to be preserved.Supplementary materials accompanying this paper appear online.

Suggested Citation

  • Huang Huang & Stefano Castruccio & Allison H. Baker & Marc G. Genton, 2023. "Saving Storage in Climate Ensembles: A Model-Based Stochastic Approach," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(2), pages 324-344, June.
  • Handle: RePEc:spr:jagbes:v:28:y:2023:i:2:d:10.1007_s13253-022-00518-x
    DOI: 10.1007/s13253-022-00518-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-022-00518-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-022-00518-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stefano Castruccio & Marc G. Genton & Ying Sun, 2019. "Visualizing spatiotemporal models with virtual reality: from fully immersive environments to applications in stereoscopic view," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(2), pages 379-387, February.
    2. Simon Mak & Chih-Li Sung & Xingjian Wang & Shiang-Ting Yeh & Yu-Hung Chang & V. Roshan Joseph & Vigor Yang & C. F. Jeff Wu, 2018. "An Efficient Surrogate Model for Emulation and Physics Extraction of Large Eddy Simulations," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1443-1456, October.
    3. López-Pintado, Sara & Romo, Juan, 2009. "On the Concept of Depth for Functional Data," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 718-734.
    4. Castruccio, Stefano & Genton, Marc G., 2018. "Principles for statistical inference on big spatio-temporal data from climate models," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 92-96.
    5. Stefano Castruccio & Joseph Guinness, 2017. "An evolutionary spectrum approach to incorporate large-scale geographical descriptors on global processes," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(2), pages 329-344, February.
    6. Marc C. Kennedy & Anthony O'Hagan, 2001. "Bayesian calibration of computer models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(3), pages 425-464.
    7. Antony M. Overstall & David C. Woods, 2016. "Multivariate emulation of computer simulators: model selection and diagnostics with application to a humanitarian relief model," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(4), pages 483-505, August.
    8. Edwards, Matthew & Castruccio, Stefano & Hammerling, Dorit, 2020. "Marginally parameterized spatio-temporal models and stepwise maximum likelihood estimation," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).
    9. Joseph Guinness & Dorit Hammerling, 2018. "Compression and Conditional Emulation of Climate Model Output," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 56-67, January.
    10. Matthew Edwards & Stefano Castruccio & Dorit Hammerling, 2019. "A Multivariate Global Spatiotemporal Stochastic Generator for Climate Ensembles," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 464-483, September.
    11. Jeremy E. Oakley & Anthony O'Hagan, 2004. "Probabilistic sensitivity analysis of complex models: a Bayesian approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(3), pages 751-769, August.
    12. Won Chang & Murali Haran & Patrick Applegate & David Pollard, 2016. "Calibrating an Ice Sheet Model Using High-Dimensional Binary Spatial Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 57-72, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abhirup Datta, 2023. "Discussion of “Saving Storage in Climate Ensembles: A Model-Based Stochastic Approach”," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(2), pages 352-357, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthew Edwards & Stefano Castruccio & Dorit Hammerling, 2019. "A Multivariate Global Spatiotemporal Stochastic Generator for Climate Ensembles," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 464-483, September.
    2. Petropoulos, G. & Wooster, M.J. & Carlson, T.N. & Kennedy, M.C. & Scholze, M., 2009. "A global Bayesian sensitivity analysis of the 1d SimSphere soil–vegetation–atmospheric transfer (SVAT) model using Gaussian model emulation," Ecological Modelling, Elsevier, vol. 220(19), pages 2427-2440.
    3. Antony M. Overstall & David C. Woods, 2016. "Multivariate emulation of computer simulators: model selection and diagnostics with application to a humanitarian relief model," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(4), pages 483-505, August.
    4. Daniel W. Gladish & Daniel E. Pagendam & Luk J. M. Peeters & Petra M. Kuhnert & Jai Vaze, 2018. "Emulation Engines: Choice and Quantification of Uncertainty for Complex Hydrological Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(1), pages 39-62, March.
    5. Zitrou, A. & Bedford, T. & Daneshkhah, A., 2013. "Robustness of maintenance decisions: Uncertainty modelling and value of information," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 60-71.
    6. Daneshkhah, Alireza & Bedford, Tim, 2013. "Probabilistic sensitivity analysis of system availability using Gaussian processes," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 82-93.
    7. Edwards, Matthew & Castruccio, Stefano & Hammerling, Dorit, 2020. "Marginally parameterized spatio-temporal models and stepwise maximum likelihood estimation," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).
    8. Storlie, Curtis B. & Reich, Brian J. & Helton, Jon C. & Swiler, Laura P. & Sallaberry, Cedric J., 2013. "Analysis of computationally demanding models with continuous and categorical inputs," Reliability Engineering and System Safety, Elsevier, vol. 113(C), pages 30-41.
    9. Arnst, M. & Goyal, K., 2017. "Sensitivity analysis of parametric uncertainties and modeling errors in computational-mechanics models by using a generalized probabilistic modeling approach," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 394-405.
    10. Mikkel Bennedsen & Eric Hillebrand & Siem Jan Koopman, 2020. "A statistical model of the global carbon budget," CREATES Research Papers 2020-18, Department of Economics and Business Economics, Aarhus University.
    11. O’Hagan, A., 2006. "Bayesian analysis of computer code outputs: A tutorial," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1290-1300.
    12. Curtis B. Storlie & William A. Lane & Emily M. Ryan & James R. Gattiker & David M. Higdon, 2015. "Calibration of Computational Models With Categorical Parameters and Correlated Outputs via Bayesian Smoothing Spline ANOVA," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 68-82, March.
    13. Jakub Bijak & Jason D. Hilton & Eric Silverman & Viet Dung Cao, 2013. "Reforging the Wedding Ring," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 29(27), pages 729-766.
    14. Overstall, Antony M. & Woods, David C. & Martin, Kieran J., 2019. "Bayesian prediction for physical models with application to the optimization of the synthesis of pharmaceutical products using chemical kinetics," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 126-142.
    15. Ioannis Andrianakis & Ian R Vernon & Nicky McCreesh & Trevelyan J McKinley & Jeremy E Oakley & Rebecca N Nsubuga & Michael Goldstein & Richard G White, 2015. "Bayesian History Matching of Complex Infectious Disease Models Using Emulation: A Tutorial and a Case Study on HIV in Uganda," PLOS Computational Biology, Public Library of Science, vol. 11(1), pages 1-18, January.
    16. Marc Kennedy & Clive Anderson & Anthony O'Hagan & Mark Lomas & Ian Woodward & John Paul Gosling & Andreas Heinemeyer, 2008. "Quantifying uncertainty in the biospheric carbon flux for England and Wales," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(1), pages 109-135, January.
    17. Samantha M. Roth & Ben Seiyon Lee & Sanjib Sharma & Iman Hosseini‐Shakib & Klaus Keller & Murali Haran, 2023. "Flood hazard model calibration using multiresolution model output," Environmetrics, John Wiley & Sons, Ltd., vol. 34(2), March.
    18. Kennedy, Marc C. & Anderson, Clive W. & Conti, Stefano & O’Hagan, Anthony, 2006. "Case studies in Gaussian process modelling of computer codes," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1301-1309.
    19. V. J. Roelofs & M. C. Kennedy, 2011. "Sensitivity Analysis and Estimation of Extreme Tail Behavior in Two‐Dimensional Monte Carlo Simulation," Risk Analysis, John Wiley & Sons, vol. 31(10), pages 1597-1609, October.
    20. Andrianakis, Ioannis & Challenor, Peter G., 2012. "The effect of the nugget on Gaussian process emulators of computer models," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4215-4228.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:28:y:2023:i:2:d:10.1007_s13253-022-00518-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.