IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v132y2019icp126-142.html
   My bibliography  Save this article

Bayesian prediction for physical models with application to the optimization of the synthesis of pharmaceutical products using chemical kinetics

Author

Listed:
  • Overstall, Antony M.
  • Woods, David C.
  • Martin, Kieran J.

Abstract

Quality control in industrial processes is increasingly making use of prior scientific knowledge, often encoded in physical models that require numerical approximation. Statistical prediction, and subsequent optimization, is key to ensuring the process output meets a specification target. However, the numerical expense of approximating the models poses computational challenges to the identification of combinations of the process factors where there is confidence in the quality of the response. Recent work in Bayesian computation and statistical approximation (emulation) of expensive computational models is exploited to develop a novel strategy for optimizing the posterior probability of a process meeting specification. The ensuing methodology is motivated by, and demonstrated on, a chemical synthesis process to manufacture a pharmaceutical product, within which an initial set of substances evolve according to chemical reactions, under certain process conditions, into a series of new substances. One of these substances is a target pharmaceutical product and two are unwanted by-products. The aim is to determine the combinations of process conditions and amounts of initial substances that maximize the probability of obtaining sufficient target pharmaceutical product whilst ensuring unwanted by-products do not exceed a given level. The relationship between the factors and amounts of substances of interest is theoretically described by the solution to a system of ordinary differential equations incorporating temperature dependence. Using data from a small experiment, it is shown how the methodology can approximate the multivariate posterior predictive distribution of the pharmaceutical target and by-products, and therefore identify suitable operating values.11Materials to replicate the analysis can be found at www.github.com/amo105/chemicalkinetics.

Suggested Citation

  • Overstall, Antony M. & Woods, David C. & Martin, Kieran J., 2019. "Bayesian prediction for physical models with application to the optimization of the synthesis of pharmaceutical products using chemical kinetics," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 126-142.
  • Handle: RePEc:eee:csdana:v:132:y:2019:i:c:p:126-142
    DOI: 10.1016/j.csda.2018.10.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016794731830272X
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2018.10.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Soetaert, Karline & Petzoldt, Thomas & Setzer, R. Woodrow, 2010. "Solving Differential Equations in R: Package deSolve," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i09).
    2. Antony M. Overstall & David C. Woods, 2013. "A Strategy for Bayesian Inference for Computationally Expensive Models with Application to the Estimation of Stem Cell Properties," Biometrics, The International Biometric Society, vol. 69(2), pages 458-468, June.
    3. Marc C. Kennedy & Anthony O'Hagan, 2001. "Bayesian calibration of computer models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(3), pages 425-464.
    4. Antony M. Overstall & David C. Woods, 2016. "Multivariate emulation of computer simulators: model selection and diagnostics with application to a humanitarian relief model," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(4), pages 483-505, August.
    5. Lebrun, Pierre & Boulanger, Bruno & Debrus, Benjamin & Lambert, Philippe & Hubert, Philippe, 2013. "A Bayesian design space for analytical methods based on multivariate models and predictions," LIDAM Reprints ISBA 2013041, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Mark Girolami & Ben Calderhead, 2011. "Riemann manifold Langevin and Hamiltonian Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(2), pages 123-214, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Parag Parashar & Chun Han Chen & Chandni Akbar & Sze Ming Fu & Tejender S Rawat & Sparsh Pratik & Rajat Butola & Shih Han Chen & Albert S Lin, 2019. "Analytics-statistics mixed training and its fitness to semisupervised manufacturing," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jackson Samuel E. & Vernon Ian & Liu Junli & Lindsey Keith, 2020. "Understanding hormonal crosstalk in Arabidopsis root development via emulation and history matching," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 19(2), pages 1-33, April.
    2. Mohammadi, Hossein & Challenor, Peter & Goodfellow, Marc, 2019. "Emulating dynamic non-linear simulators using Gaussian processes," Computational Statistics & Data Analysis, Elsevier, vol. 139(C), pages 178-196.
    3. Huang Huang & Stefano Castruccio & Allison H. Baker & Marc G. Genton, 2023. "Saving Storage in Climate Ensembles: A Model-Based Stochastic Approach," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(2), pages 324-344, June.
    4. Huaimin Diao & Yan Wang & Dianpeng Wang, 2022. "A D-Optimal Sequential Calibration Design for Computer Models," Mathematics, MDPI, vol. 10(9), pages 1-15, April.
    5. Vanslette, Kevin & Tohme, Tony & Youcef-Toumi, Kamal, 2020. "A general model validation and testing tool," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    6. Ranjan, Rakesh & Sen, Rijji & Upadhyay, Satyanshu K., 2021. "Bayes analysis of some important lifetime models using MCMC based approaches when the observations are left truncated and right censored," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    7. Bournakis, Ioannis & Tsionas, Mike G., 2023. "A Non-Parametric Estimation of Productivity with Idiosyncratic and Aggregate Shocks: The Role of Research and Development (R&D) and Corporate Tax," MPRA Paper 118100, University Library of Munich, Germany.
    8. Chen, Zhongfei & Wanke, Peter & Tsionas, Mike G., 2018. "Assessing the strategic fit of potential M&As in Chinese banking: A novel Bayesian stochastic frontier approach," Economic Modelling, Elsevier, vol. 73(C), pages 254-263.
    9. Matthias Katzfuss & Joseph Guinness & Wenlong Gong & Daniel Zilber, 2020. "Vecchia Approximations of Gaussian-Process Predictions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 383-414, September.
    10. Atkinson, Scott E. & Tsionas, Mike G., 2021. "Generalized estimation of productivity with multiple bad outputs: The importance of materials balance constraints," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1165-1186.
    11. Caroline Khan & Mike G. Tsionas, 2021. "Constraints in models of production and cost via slack-based measures," Empirical Economics, Springer, vol. 61(6), pages 3347-3374, December.
    12. Jakub Bijak & Jason D. Hilton & Eric Silverman & Viet Dung Cao, 2013. "Reforging the Wedding Ring," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 29(27), pages 729-766.
    13. Hao Wu & Michael Browne, 2015. "Random Model Discrepancy: Interpretations and Technicalities (A Rejoinder)," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 619-624, September.
    14. Liu, Jia & Maheu, John M & Song, Yong, 2023. "Identification and Forecasting of Bull and Bear Markets using Multivariate Returns," MPRA Paper 119515, University Library of Munich, Germany.
    15. Dimitrakopoulos, Stefanos & Tsionas, Mike, 2019. "Ordinal-response GARCH models for transaction data: A forecasting exercise," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1273-1287.
    16. Vanhatalo, Jarno & Veneranta, Lari & Hudd, Richard, 2012. "Species distribution modeling with Gaussian processes: A case study with the youngest stages of sea spawning whitefish (Coregonus lavaretus L. s.l.) larvae," Ecological Modelling, Elsevier, vol. 228(C), pages 49-58.
    17. Villez, Kris & Del Giudice, Dario & Neumann, Marc B. & Rieckermann, Jörg, 2020. "Accounting for erroneous model structures in biokinetic process models," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    18. Stephen G. Hall & Heather D. Gibson & G. S. Tavlas & Mike G. Tsionas, 2020. "A Monte Carlo Study of Time Varying Coefficient (TVC) Estimation," Computational Economics, Springer;Society for Computational Economics, vol. 56(1), pages 115-130, June.
    19. Xiaoyu Xiong & Benjamin D. Youngman & Theodoros Economou, 2021. "Data fusion with Gaussian processes for estimation of environmental hazard events," Environmetrics, John Wiley & Sons, Ltd., vol. 32(3), May.
    20. Will Penny & Biswa Sengupta, 2016. "Annealed Importance Sampling for Neural Mass Models," PLOS Computational Biology, Public Library of Science, vol. 12(3), pages 1-25, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:132:y:2019:i:c:p:126-142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.