IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v22y2017i3d10.1007_s13253-017-0289-2.html
   My bibliography  Save this article

Hierarchical Nonlinear Spatio-temporal Agent-Based Models for Collective Animal Movement

Author

Listed:
  • Patrick L. McDermott

    (University of Missouri)

  • Christopher K. Wikle

    (University of Missouri)

  • Joshua Millspaugh

    (University of Montana)

Abstract

Modeling complex collective animal movement presents distinct challenges. In particular, modeling the interactions between animals and the nonlinear behaviors associated with these interactions, while accounting for uncertainty in data, model, and parameters, requires a flexible modeling framework. To address these challenges, we propose a general hierarchical framework for modeling collective movement behavior with multiple stages. Each of these stages can be thought of as processes that are flexible enough to model a variety of complex behaviors. For example, self-propelled particle (SPP) models (e.g., Vicsek et al. in Phys Rev Lett 75:1226–1229, 1995) represent collective behavior and are often applied in the physics and biology literature. To date, the study and application of these models has almost exclusively focused on simulation studies, with less attention given to rigorously quantifying the uncertainty. Here, we demonstrate our general framework with a hierarchical version of the SPP model applied to collective animal movement. This structure allows us to make inference on potential covariates (e.g., habitat) that describe the behavior of agents and rigorously quantify uncertainty. Further, this framework allows for the discrete time prediction of animal locations in the presence of missing observations. Due to the computational challenges associated with the proposed model, we develop an approximate Bayesian computation algorithm for estimation. We illustrate the hierarchical SPP methodology with a simulation study and by modeling the movement of guppies. Supplementary materials accompanying this paper appear online.

Suggested Citation

  • Patrick L. McDermott & Christopher K. Wikle & Joshua Millspaugh, 2017. "Hierarchical Nonlinear Spatio-temporal Agent-Based Models for Collective Animal Movement," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(3), pages 294-312, September.
  • Handle: RePEc:spr:jagbes:v:22:y:2017:i:3:d:10.1007_s13253-017-0289-2
    DOI: 10.1007/s13253-017-0289-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-017-0289-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-017-0289-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard P Mann, 2011. "Bayesian Inference for Identifying Interaction Rules in Moving Animal Groups," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-10, August.
    2. repec:dau:papers:123456789/5724 is not listed on IDEAS
    3. Lagarrigues, Guillaume & Jabot, Franck & Lafond, Valentine & Courbaud, Benoit, 2015. "Approximate Bayesian computation to recalibrate individual-based models with population data: Illustration with a forest simulation model," Ecological Modelling, Elsevier, vol. 306(C), pages 278-286.
    4. Gael M. Martin & Brendan P.M. McCabe & David T. Frazier & Worapree Maneesoonthorn & Christian P. Robert, 2016. "Auxiliary Likelihood-Based Approximate Bayesian Computation in State Space Models," Monash Econometrics and Business Statistics Working Papers 09/16, Monash University, Department of Econometrics and Business Statistics.
    5. James C. Russell & Ephraim M. Hanks & Murali Haran, 2016. "Dynamic Models of Animal Movement with Spatial Point Process Interactions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(1), pages 22-40, March.
    6. Paul Fearnhead & Dennis Prangle, 2012. "Constructing summary statistics for approximate Bayesian computation: semi-automatic approximate Bayesian computation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 74(3), pages 419-474, June.
    7. Elena Ehrlich & Ajay Jasra & Nikolas Kantas, 2015. "Gradient Free Parameter Estimation for Hidden Markov Models with Intractable Likelihoods," Methodology and Computing in Applied Probability, Springer, vol. 17(2), pages 315-349, June.
    8. Hooten, Mevin B. & Wikle, Christopher K., 2010. "Statistical Agent-Based Models for Discrete Spatio-Temporal Systems," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 236-248.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrew Hoegh & Frank T. Manen & Mark Haroldson, 2021. "Agent-Based Models for Collective Animal Movement: Proximity-Induced State Switching," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(4), pages 560-579, December.
    2. Samuel G. Fadel & Sebastian Mair & Ricardo da Silva Torres & Ulf Brefeld, 2023. "Contextual movement models based on normalizing flows," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(1), pages 51-72, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James C. Russell & Ephraim M. Hanks & Andreas P. Modlmeier & David P. Hughes, 2017. "Modeling Collective Animal Movement Through Interactions in Behavioral States," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(3), pages 313-334, September.
    2. Grazzini, Jakob & Richiardi, Matteo G. & Tsionas, Mike, 2017. "Bayesian estimation of agent-based models," Journal of Economic Dynamics and Control, Elsevier, vol. 77(C), pages 26-47.
    3. D.T. Frazier & G.M. Martin & C.P. Robert & J. Rousseau, 2016. "Asymptotic Properties of Approximate Bayesian Computation," Monash Econometrics and Business Statistics Working Papers 18/16, Monash University, Department of Econometrics and Business Statistics.
    4. Xing Ju Lee & Christopher C. Drovandi & Anthony N. Pettitt, 2015. "Model choice problems using approximate Bayesian computation with applications to pathogen transmission data sets," Biometrics, The International Biometric Society, vol. 71(1), pages 198-207, March.
    5. McKinley, Trevelyan J. & Ross, Joshua V. & Deardon, Rob & Cook, Alex R., 2014. "Simulation-based Bayesian inference for epidemic models," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 434-447.
    6. Pierre-Olivier Goffard & Patrick Laub, 2021. "Approximate Bayesian Computations to fit and compare insurance loss models," Working Papers hal-02891046, HAL.
    7. Mevin B. Hooten & Ruth King & Roland Langrock, 2017. "Guest Editor’s Introduction to the Special Issue on “Animal Movement Modeling”," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(3), pages 224-231, September.
    8. Bertl Johanna & Ewing Gregory & Kosiol Carolin & Futschik Andreas, 2017. "Approximate maximum likelihood estimation for population genetic inference," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 16(5-6), pages 387-405, December.
    9. Florian Maire & Nial Friel & Pierre ALQUIER, 2017. "Informed Sub-Sampling MCMC: Approximate Bayesian Inference for Large Datasets," Working Papers 2017-40, Center for Research in Economics and Statistics.
    10. Perepolkin, Dmytro & Goodrich, Benjamin & Sahlin, Ullrika, 2023. "The tenets of quantile-based inference in Bayesian models," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    11. James C. Russell & Ephraim M. Hanks & Murali Haran, 2016. "Dynamic Models of Animal Movement with Spatial Point Process Interactions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(1), pages 22-40, March.
    12. Espen Bernton & Pierre E. Jacob & Mathieu Gerber & Christian P. Robert, 2019. "Approximate Bayesian computation with the Wasserstein distance," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 235-269, April.
    13. Chkrebtii, Oksana A. & Cameron, Erin K. & Campbell, David A. & Bayne, Erin M., 2015. "Transdimensional approximate Bayesian computation for inference on invasive species models with latent variables of unknown dimension," Computational Statistics & Data Analysis, Elsevier, vol. 86(C), pages 97-110.
    14. Jonathan U Harrison & Ruth E Baker, 2018. "The impact of temporal sampling resolution on parameter inference for biological transport models," PLOS Computational Biology, Public Library of Science, vol. 14(6), pages 1-30, June.
    15. Baey, Charlotte & Smith, Henrik G. & Rundlöf, Maj & Olsson, Ola & Clough, Yann & Sahlin, Ullrika, 2023. "Calibration of a bumble bee foraging model using Approximate Bayesian Computation," Ecological Modelling, Elsevier, vol. 477(C).
    16. Gael M. Martin & Brendan P.M. McCabe & David T. Frazier & Worapree Maneesoonthorn & Christian P. Robert, 2016. "Auxiliary Likelihood-Based Approximate Bayesian Computation in State Space Models," Monash Econometrics and Business Statistics Working Papers 09/16, Monash University, Department of Econometrics and Business Statistics.
    17. Alexander Buchholz & Nicolas CHOPIN, 2017. "Improving approximate Bayesian computation via quasi Monte Carlo," Working Papers 2017-37, Center for Research in Economics and Statistics.
    18. Christian P. Robert, 2013. "Bayesian Computational Tools," Working Papers 2013-45, Center for Research in Economics and Statistics.
    19. Delli Gatti,Domenico & Fagiolo,Giorgio & Gallegati,Mauro & Richiardi,Matteo & Russo,Alberto (ed.), 2018. "Agent-Based Models in Economics," Cambridge Books, Cambridge University Press, number 9781108400046.
    20. Buzbas, Erkan O. & Rosenberg, Noah A., 2015. "AABC: Approximate approximate Bayesian computation for inference in population-genetic models," Theoretical Population Biology, Elsevier, vol. 99(C), pages 31-42.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:22:y:2017:i:3:d:10.1007_s13253-017-0289-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.