IDEAS home Printed from https://ideas.repec.org/a/spr/grdene/v32y2023i1d10.1007_s10726-022-09797-8.html
   My bibliography  Save this article

Ranking Objects from Individual Linguistic Dual Hesitant Fuzzy Information in View of Optimal Model-Based Consistency and Consensus Iteration Algorithm

Author

Listed:
  • Fanyong Meng

    (Nanjing University of Information Science and Technology)

  • Aiqing Zeng

    (Hunan University of Technology and Business)

  • Jie Tang

    (Nanjing University of Information Science and Technology)

  • Witold Pedrycz

    (University of Alberta)

Abstract

Linguistic variables are flexible and intuitive attraction for expressing the wording of decision makers. This paper introduces a new type of linguistic fuzzy sets called linguistic dual hesitant fuzzy sets to express the hesitancy of decision makers’ qualitative preferences and non-preferences. Considering the application in decision making, linguistic dual hesitant fuzzy preference relations (LDHFPRs) are introduced that permit the decision makers to apply several linguistic variables to indicate a qualitative preferred judgment and a qualitative non-preferred judgment, respectively. To rank objects from LDHFPRs rationally, a consistency concept is first presented. Then, two optimal models are built to judge the consistency of LDHFPRs. When LDHFPRs are inconsistent, an optimal model-based iteration algorithm for obtaining consistent LDHFPRs is offered. Based on consistent linguistic intuitionistic fuzzy preference relations, a method for calculating the weighted linguistic intuitionistic fuzzy priority vector is introduced. In the setting of group decision making (GDM), a consensus measure based on individually weighted consistent reverse complementary linguistic intuitionistic fuzzy preference relations is defined. When the consensus does not satisfy the requirement, a two-step optimal model-based method for increasing the consensus level is offered. Furthermore, an approach for GDM with LDHFPRs is developed. Finally, an illustrative example concerning the evaluation of basic services internet enterprise websites is provided to show the efficiency of the new method.

Suggested Citation

  • Fanyong Meng & Aiqing Zeng & Jie Tang & Witold Pedrycz, 2023. "Ranking Objects from Individual Linguistic Dual Hesitant Fuzzy Information in View of Optimal Model-Based Consistency and Consensus Iteration Algorithm," Group Decision and Negotiation, Springer, vol. 32(1), pages 5-44, February.
  • Handle: RePEc:spr:grdene:v:32:y:2023:i:1:d:10.1007_s10726-022-09797-8
    DOI: 10.1007/s10726-022-09797-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10726-022-09797-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10726-022-09797-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dong, Yucheng & Xu, Yinfeng & Li, Hongyi, 2008. "On consistency measures of linguistic preference relations," European Journal of Operational Research, Elsevier, vol. 189(2), pages 430-444, September.
    2. Bin Zhu & Zeshui Xu & Meimei Xia, 2012. "Dual Hesitant Fuzzy Sets," Journal of Applied Mathematics, Hindawi, vol. 2012, pages 1-13, May.
    3. Wu, Zhibin & Xu, Jiuping, 2016. "Managing consistency and consensus in group decision making with hesitant fuzzy linguistic preference relations," Omega, Elsevier, vol. 65(C), pages 28-40.
    4. Xu, Zeshui, 2005. "Deviation measures of linguistic preference relations in group decision making," Omega, Elsevier, vol. 33(3), pages 249-254, June.
    5. Adolfo Rene Santa Cruz Rodriguez & Paulo Vitor De Oliveira, 2022. "An extension of systematic layout planning by using fuzzy AHP and fuzzy VIKOR methods: a case study," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 16(1), pages 1-30.
    6. Wang, Zongrun & Zhou, Ling & Mi, Yunlong & Shi, Yong, 2022. "Measuring dynamic pandemic-related policy effects: A time-varying parameter multi-level dynamic factor model approach," Journal of Economic Dynamics and Control, Elsevier, vol. 139(C).
    7. Cai, Wei & Lai, Kee-hung, 2021. "Sustainability assessment of mechanical manufacturing systems in the industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    8. Yucheng Dong & Cong-Cong Li & Yinfeng Xu & Xin Gu, 2015. "Consensus-Based Group Decision Making Under Multi-granular Unbalanced 2-Tuple Linguistic Preference Relations," Group Decision and Negotiation, Springer, vol. 24(2), pages 217-242, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Hong-Bin & Ma, Tieju & Huynh, Van-Nam, 2017. "On qualitative multi-attribute group decision making and its consensus measure: A probability based perspective," Omega, Elsevier, vol. 70(C), pages 94-117.
    2. Wu, Zhibin & Xu, Jiuping, 2016. "Managing consistency and consensus in group decision making with hesitant fuzzy linguistic preference relations," Omega, Elsevier, vol. 65(C), pages 28-40.
    3. Wenqi Liu & Hengjie Zhang & Haiming Liang & Cong-cong Li & Yucheng Dong, 2022. "Managing Consistency and Consensus Issues in Group Decision-Making with Self-Confident Additive Preference Relations and Without Feedback: A Nonlinear Optimization Method," Group Decision and Negotiation, Springer, vol. 31(1), pages 213-240, February.
    4. Wu, Zhibin & Huang, Shuai & Xu, Jiuping, 2019. "Multi-stage optimization models for individual consistency and group consensus with preference relations," European Journal of Operational Research, Elsevier, vol. 275(1), pages 182-194.
    5. Zhang, Hengjie & Dong, Yucheng & Chiclana, Francisco & Yu, Shui, 2019. "Consensus efficiency in group decision making: A comprehensive comparative study and its optimal design," European Journal of Operational Research, Elsevier, vol. 275(2), pages 580-598.
    6. Zaiwu Gong & Chao Xu & Francisco Chiclana & Xiaoxia Xu, 2017. "Consensus Measure with Multi-stage Fluctuation Utility Based on China’s Urban Demolition Negotiation," Group Decision and Negotiation, Springer, vol. 26(2), pages 379-407, March.
    7. Sumin Yu & Zhijiao Du & Xuanhua Xu, 2021. "Hierarchical Punishment-Driven Consensus Model for Probabilistic Linguistic Large-Group Decision Making with Application to Global Supplier Selection," Group Decision and Negotiation, Springer, vol. 30(6), pages 1343-1372, December.
    8. Sha Fan & Hengjie Zhang & Huali Tang, 2019. "A Linguistic Hierarchy Model with Self-Confidence Preference Relations and Its Application in Co-Regulation of Food Safety in China," IJERPH, MDPI, vol. 16(16), pages 1-21, August.
    9. Wu, Xingli & Liao, Huchang, 2019. "A consensus-based probabilistic linguistic gained and lost dominance score method," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1017-1027.
    10. Yucheng Dong & Cong-Cong Li & Yinfeng Xu & Xin Gu, 2015. "Consensus-Based Group Decision Making Under Multi-granular Unbalanced 2-Tuple Linguistic Preference Relations," Group Decision and Negotiation, Springer, vol. 24(2), pages 217-242, March.
    11. Sun, Bingzhen & Ma, Weimin, 2015. "An approach to consensus measurement of linguistic preference relations in multi-attribute group decision making and application," Omega, Elsevier, vol. 51(C), pages 83-92.
    12. Dong, Yucheng & Xu, Yinfeng & Li, Hongyi & Feng, Bo, 2010. "The OWA-based consensus operator under linguistic representation models using position indexes," European Journal of Operational Research, Elsevier, vol. 203(2), pages 455-463, June.
    13. Meng, Fanyong & Tan, Chunqiao & Chen, Xiaohong, 2017. "Multiplicative consistency analysis for interval fuzzy preference relations: A comparative study," Omega, Elsevier, vol. 68(C), pages 17-38.
    14. Pei Wang & Xuanhua Xu & Shuai Huang, 2019. "An Improved Consensus-Based Model for Large Group Decision Making Problems Considering Experts with Linguistic Weighted Information," Group Decision and Negotiation, Springer, vol. 28(3), pages 619-640, June.
    15. Jie Tang & Fanyong Meng & Francisco Javier Cabrerizo & Enrique Herrera-Viedma, 2020. "Group Decision Making with Interval-Valued Intuitionistic Multiplicative Linguistic Preference Relations," Group Decision and Negotiation, Springer, vol. 29(1), pages 169-206, February.
    16. Feifei Jin & Chang Li & Jinpei Liu & Ligang Zhou, 2021. "Distribution Linguistic Fuzzy Group Decision Making Based on Consistency and Consensus Analysis," Mathematics, MDPI, vol. 9(19), pages 1-19, October.
    17. Pang, Jifang & Liang, Jiye, 2012. "Evaluation of the results of multi-attribute group decision-making with linguistic information," Omega, Elsevier, vol. 40(3), pages 294-301.
    18. Ni Li & Minghui Sun & Zhuming Bi & Zeya Su & Chao Wang, 2014. "A new methodology to support group decision-making for IoT-based emergency response systems," Information Systems Frontiers, Springer, vol. 16(5), pages 953-977, November.
    19. Dheeraj Kumar Joshi & Ismat Beg & Sanjay Kumar, 2018. "Hesitant Probabilistic Fuzzy Linguistic Sets with Applications in Multi-Criteria Group Decision Making Problems," Mathematics, MDPI, vol. 6(4), pages 1-20, March.
    20. Zeshui Xu, 2013. "Compatibility Analysis of Intuitionistic Fuzzy Preference Relations in Group Decision Making," Group Decision and Negotiation, Springer, vol. 22(3), pages 463-482, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:grdene:v:32:y:2023:i:1:d:10.1007_s10726-022-09797-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.