IDEAS home Printed from https://ideas.repec.org/a/spr/grdene/v17y2008i3d10.1007_s10726-007-9072-z.html
   My bibliography  Save this article

The Core of Consistency in AHP-Group Decision Making

Author

Listed:
  • J. M. Moreno-Jiménez

    (Facultad de Económicas)

  • J. Aguarón

    (Facultad de Económicas)

  • M. T. Escobar

    (Facultad de Económicas)

Abstract

This paper presents a new tool, the Consistency Consensus Matrix, designed to encourage the search for consensus in group decision making when using the Analytic Hierarchy Process (AHP). The procedure exploits one of the characteristics of AHP: the possibility of measuring consistency in judgement elicitation. Using two other tools, Preference Structures and Stability Intervals, we derive the Consistency Consensus Matrix that corresponds to the actor’s core of consistency. The performance analysis of the preference structure obtained from this matrix provides us with valuable information in search for knowledge. The new tool is illustrated by means of a case study adapted from a real-life experiment in e-democracy developed for the City Council of Zaragoza (Spain).

Suggested Citation

  • J. M. Moreno-Jiménez & J. Aguarón & M. T. Escobar, 2008. "The Core of Consistency in AHP-Group Decision Making," Group Decision and Negotiation, Springer, vol. 17(3), pages 249-265, May.
  • Handle: RePEc:spr:grdene:v:17:y:2008:i:3:d:10.1007_s10726-007-9072-z
    DOI: 10.1007/s10726-007-9072-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10726-007-9072-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10726-007-9072-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Escobar, M. T. & Moreno-Jimenez, J. M., 2000. "Reciprocal distributions in the analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 123(1), pages 154-174, May.
    2. Moreno-Jiménez, José María & Polasek, Wolfgang, 2003. "E-Democracy and Knowledge. A Multicriteria Framework for the New Democratic Era," Economics Series 142, Institute for Advanced Studies.
    3. Ramanathan, R. & Ganesh, L. S., 1994. "Group preference aggregation methods employed in AHP: An evaluation and an intrinsic process for deriving members' weightages," European Journal of Operational Research, Elsevier, vol. 79(2), pages 249-265, December.
    4. Aguaron, Juan & Escobar, Maria Teresa & Moreno-Jimenez, Jose Maria, 2003. "Consistency stability intervals for a judgement in AHP decision support systems," European Journal of Operational Research, Elsevier, vol. 145(2), pages 382-393, March.
    5. Forman, Ernest & Peniwati, Kirti, 1998. "Aggregating individual judgments and priorities with the analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 108(1), pages 165-169, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan Aguarón & María Teresa Escobar & José María Moreno-Jiménez, 2016. "The precise consistency consensus matrix in a local AHP-group decision making context," Annals of Operations Research, Springer, vol. 245(1), pages 245-259, October.
    2. Bernasconi, Michele & Choirat, Christine & Seri, Raffaello, 2014. "Empirical properties of group preference aggregation methods employed in AHP: Theory and evidence," European Journal of Operational Research, Elsevier, vol. 232(3), pages 584-592.
    3. Aguarón, Juan & Escobar, María Teresa & Moreno-Jiménez, José María, 2021. "Reducing inconsistency measured by the geometric consistency index in the analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 288(2), pages 576-583.
    4. Juan Aguarón & María Teresa Escobar & José María Moreno-Jiménez & Alberto Turón, 2020. "The Triads Geometric Consistency Index in AHP-Pairwise Comparison Matrices," Mathematics, MDPI, vol. 8(6), pages 1-17, June.
    5. Wenqi Liu & Hengjie Zhang & Haiming Liang & Cong-cong Li & Yucheng Dong, 2022. "Managing Consistency and Consensus Issues in Group Decision-Making with Self-Confident Additive Preference Relations and Without Feedback: A Nonlinear Optimization Method," Group Decision and Negotiation, Springer, vol. 31(1), pages 213-240, February.
    6. Dušan M. Milošević & Mimica R. Milošević & Dušan J. Simjanović, 2020. "Implementation of Adjusted Fuzzy AHP Method in the Assessment for Reuse of Industrial Buildings," Mathematics, MDPI, vol. 8(10), pages 1-24, October.
    7. Manuel Salvador & Alfredo Altuzarra & Pilar Gargallo & José María Moreno-Jiménez, 2015. "A Bayesian Approach to Maximising Inner Compatibility in AHP-Systemic Decision Making," Group Decision and Negotiation, Springer, vol. 24(4), pages 655-673, July.
    8. Wen-Hsien Tsai & Ching-Chien Yang & Jun-Der Leu & Ya-Fen Lee & Chih-Hao Yang, 2013. "An Integrated Group Decision Making Support Model for Corporate Financing Decisions," Group Decision and Negotiation, Springer, vol. 22(6), pages 1103-1127, November.
    9. Petra Grošelj & Špela Pezdevšek Malovrh & Lidija Zadnik Stirn, 2011. "Methods based on data envelopment analysis for deriving group priorities in analytic hierarchy process," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 19(3), pages 267-284, September.
    10. Zhang, Hengjie & Dong, Yucheng & Chiclana, Francisco & Yu, Shui, 2019. "Consensus efficiency in group decision making: A comprehensive comparative study and its optimal design," European Journal of Operational Research, Elsevier, vol. 275(2), pages 580-598.
    11. Virgilio López-Morales & Joel Suárez-Cansino, 2017. "Reliable Intervals Method in Decision-Based Support Models for Group Decision-Making," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(01), pages 183-204, January.
    12. Toly Chen, 2021. "A diversified AHP-tree approach for multiple-criteria supplier selection," Computational Management Science, Springer, vol. 18(4), pages 431-453, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manuel Salvador & Alfredo Altuzarra & Pilar Gargallo & José María Moreno-Jiménez, 2015. "A Bayesian Approach to Maximising Inner Compatibility in AHP-Systemic Decision Making," Group Decision and Negotiation, Springer, vol. 24(4), pages 655-673, July.
    2. Pilar Gargallo & José María Moreno-Jiménez & Manuel Salvador, 2007. "AHP-Group Decision Making: A Bayesian Approach Based on Mixtures for Group Pattern Identification," Group Decision and Negotiation, Springer, vol. 16(6), pages 485-506, November.
    3. José María Moreno-Jiménez & Manuel Salvador & Pilar Gargallo & Alfredo Altuzarra, 2016. "Systemic decision making in AHP: a Bayesian approach," Annals of Operations Research, Springer, vol. 245(1), pages 261-284, October.
    4. Juan Aguarón & María Teresa Escobar & José María Moreno-Jiménez & Alberto Turón, 2019. "AHP-Group Decision Making Based on Consistency," Mathematics, MDPI, vol. 7(3), pages 1-15, March.
    5. JosÉ MarÍa & Moreno JimÉnez & Juan AguarÓn Joven & AgustÍn Raluy Pirla & Alberto TurÓn Lanuza, 2005. "A Spreadsheet Module for Consistent Consensus Building in AHP-Group Decision Making," Group Decision and Negotiation, Springer, vol. 14(2), pages 89-108, March.
    6. Alfredo Altuzarra & José María Moreno-Jiménez & Manuel Salvador, 2010. "Consensus Building in AHP-Group Decision Making: A Bayesian Approach," Operations Research, INFORMS, vol. 58(6), pages 1755-1773, December.
    7. Juan Aguarón & María Teresa Escobar & José María Moreno-Jiménez, 2016. "The precise consistency consensus matrix in a local AHP-group decision making context," Annals of Operations Research, Springer, vol. 245(1), pages 245-259, October.
    8. Escobar, M. T. & Aguaron, J. & Moreno-Jimenez, J. M., 2004. "A note on AHP group consistency for the row geometric mean priorization procedure," European Journal of Operational Research, Elsevier, vol. 153(2), pages 318-322, March.
    9. María Teresa Escobar & José María Moreno-jiménez, 2007. "Aggregation of Individual Preference Structures in Ahp-Group Decision Making," Group Decision and Negotiation, Springer, vol. 16(4), pages 287-301, July.
    10. Juan Aguarón & María Teresa Escobar & José María Moreno-Jiménez, 2023. "Reducing incompatibility in a local AHP-group decision making context," Annals of Operations Research, Springer, vol. 326(1), pages 1-26, July.
    11. Jacinto González-Pachón & Carlos Romero, 2007. "Inferring consensus weights from pairwise comparison matrices without suitable properties," Annals of Operations Research, Springer, vol. 154(1), pages 123-132, October.
    12. B S Ahn & S H Choi, 2008. "ERP system selection using a simulation-based AHP approach: a case of Korean homeshopping company," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(3), pages 322-330, March.
    13. Hsu-Shih Shih, 2016. "A Mixed-Data Evaluation in Group TOPSIS with Differentiated Decision Power," Group Decision and Negotiation, Springer, vol. 25(3), pages 537-565, May.
    14. Zhu, Bin & Xu, Zeshui, 2014. "Analytic hierarchy process-hesitant group decision making," European Journal of Operational Research, Elsevier, vol. 239(3), pages 794-801.
    15. Aull-Hyde, Rhonda & Erdogan, Sevgi & Duke, Joshua M., 2006. "An experiment on the consistency of aggregated comparison matrices in AHP," European Journal of Operational Research, Elsevier, vol. 171(1), pages 290-295, May.
    16. Milan Ranđelović & Jelena Stanković & Kristijan Kuk & Gordana Savić & Dragan Ranđelović, 2018. "An Approach to Determining the Importance of Model Criteria in Certifying a City as Business-Friendly," Interfaces, INFORMS, vol. 48(2), pages 156-165, April.
    17. Lee, Hakyeon & Geum, Youngjung, 2017. "Development of the scenario-based technology roadmap considering layer heterogeneity: An approach using CIA and AHP," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 12-24.
    18. Höfer, Tim & Sunak, Yasin & Siddique, Hafiz & Madlener, Reinhard, 2016. "Wind farm siting using a spatial Analytic Hierarchy Process approach: A case study of the Städteregion Aachen," Applied Energy, Elsevier, vol. 163(C), pages 222-243.
    19. Sofia Spyridonidou & Georgia Sismani & Eva Loukogeorgaki & Dimitra G. Vagiona & Hagit Ulanovsky & Daniel Madar, 2021. "Sustainable Spatial Energy Planning of Large-Scale Wind and PV Farms in Israel: A Collaborative and Participatory Planning Approach," Energies, MDPI, vol. 14(3), pages 1-23, January.
    20. Jerónimo Aznar & Francisco Guijarro & José Moreno-Jiménez, 2011. "Mixed valuation methods: a combined AHP-GP procedure for individual and group multicriteria agricultural valuation," Annals of Operations Research, Springer, vol. 190(1), pages 221-238, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:grdene:v:17:y:2008:i:3:d:10.1007_s10726-007-9072-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.