IDEAS home Printed from https://ideas.repec.org/a/spr/flsman/v29y2017i1d10.1007_s10696-016-9264-4.html
   My bibliography  Save this article

A flexible crane scheduling methodology for container terminals

Author

Listed:
  • Guvenc Dik

    (Queensland University of Technology)

  • Erhan Kozan

    (Queensland University of Technology)

Abstract

In this paper, we propose a flexible neighbourhood search strategy for quay crane scheduling problems based on the framework of tabu search (TS) algorithm. In the literature, the container workload of a ship is partitioned into a number of fixed jobs to deal with the complexity of the problem. In this paper, we propose flexible jobs which are dynamically changed by TS throughout the search process to eliminate the impact of fixed jobs on the generated schedules. Alternative job sequences are investigated for quay cranes and a new quay crane dispatching policy is developed to generate schedules. Computational experiments conducted with problem instances available in the literature showed that our algorithm is capable of generating quality schedules for quay crane handling operations at reasonable times.

Suggested Citation

  • Guvenc Dik & Erhan Kozan, 2017. "A flexible crane scheduling methodology for container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 29(1), pages 64-96, March.
  • Handle: RePEc:spr:flsman:v:29:y:2017:i:1:d:10.1007_s10696-016-9264-4
    DOI: 10.1007/s10696-016-9264-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10696-016-9264-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10696-016-9264-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Unsal, Ozgur & Oguz, Ceyda, 2013. "Constraint programming approach to quay crane scheduling problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 59(C), pages 108-122.
    2. Bierwirth, Christian & Meisel, Frank, 2010. "A survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 202(3), pages 615-627, May.
    3. M Flavia Monaco & Luigi Moccia & Marcello Sammarra, 2009. "Operations Research for the management of a transhipment container terminal: The Gioia Tauro case," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 11(1), pages 7-35, March.
    4. Chen, Jiang Hang & Lee, Der-Horng & Goh, Mark, 2014. "An effective mathematical formulation for the unidirectional cluster-based quay crane scheduling problem," European Journal of Operational Research, Elsevier, vol. 232(1), pages 198-208.
    5. A Wong & E Kozan, 2010. "Optimization of container process at seaport terminals," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(4), pages 658-665, April.
    6. Vis, Iris F. A. & de Koster, Rene, 2003. "Transshipment of containers at a container terminal: An overview," European Journal of Operational Research, Elsevier, vol. 147(1), pages 1-16, May.
    7. Andrew Lim & Brian Rodrigues & Zhou Xu, 2007. "A m‐parallel crane scheduling problem with a non‐crossing constraint," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(2), pages 115-127, March.
    8. Fred Glover, 1989. "Tabu Search---Part I," INFORMS Journal on Computing, INFORMS, vol. 1(3), pages 190-206, August.
    9. Bierwirth, Christian & Meisel, Frank, 2015. "A follow-up survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 244(3), pages 675-689.
    10. Kim, Kap Hwan & Park, Young-Man, 2004. "A crane scheduling method for port container terminals," European Journal of Operational Research, Elsevier, vol. 156(3), pages 752-768, August.
    11. Luigi Moccia & Jean‐François Cordeau & Manlio Gaudioso & Gilbert Laporte, 2006. "A branch‐and‐cut algorithm for the quay crane scheduling problem in a container terminal," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(1), pages 45-59, February.
    12. B Casey & E Kozan, 2012. "Optimising container storage processes at multimodal terminals," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(8), pages 1126-1142, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Damla Kizilay & Deniz Türsel Eliiyi, 2021. "A comprehensive review of quay crane scheduling, yard operations and integrations thereof in container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 1-42, March.
    2. T. Jonker & M. B. Duinkerken & N. Yorke-Smith & A. Waal & R. R. Negenborn, 2021. "Coordinated optimization of equipment operations in a container terminal," Flexible Services and Manufacturing Journal, Springer, vol. 33(2), pages 281-311, June.
    3. Jiang Hang Chen, 2019. "A note on: a flexible crane scheduling methodology for container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 31(1), pages 34-40, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Damla Kizilay & Deniz Türsel Eliiyi, 2021. "A comprehensive review of quay crane scheduling, yard operations and integrations thereof in container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 1-42, March.
    2. Qin, Tianbao & Du, Yuquan & Chen, Jiang Hang & Sha, Mei, 2020. "Combining mixed integer programming and constraint programming to solve the integrated scheduling problem of container handling operations of a single vessel," European Journal of Operational Research, Elsevier, vol. 285(3), pages 884-901.
    3. Shoufeng Ma & Hongming Li & Ning Zhu & Chenyi Fu, 2021. "Stochastic programming approach for unidirectional quay crane scheduling problem with uncertainty," Journal of Scheduling, Springer, vol. 24(2), pages 137-174, April.
    4. Boysen, Nils & Briskorn, Dirk & Meisel, Frank, 2017. "A generalized classification scheme for crane scheduling with interference," European Journal of Operational Research, Elsevier, vol. 258(1), pages 343-357.
    5. Gharehgozli, Amir & Zaerpour, Nima, 2018. "Stacking outbound barge containers in an automated deep-sea terminal," European Journal of Operational Research, Elsevier, vol. 267(3), pages 977-995.
    6. Kong, Lingrui & Ji, Mingjun & Gao, Zhendi, 2022. "An exact algorithm for scheduling tandem quay crane operations in container terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    7. Sun, Defeng & Tang, Lixin & Baldacci, Roberto & Lim, Andrew, 2021. "An exact algorithm for the unidirectional quay crane scheduling problem with vessel stability," European Journal of Operational Research, Elsevier, vol. 291(1), pages 271-283.
    8. Shucheng Yu & Shuaian Wang & Lu Zhen, 2017. "Quay crane scheduling problem with considering tidal impact and fuel consumption," Flexible Services and Manufacturing Journal, Springer, vol. 29(3), pages 345-368, December.
    9. Abdellah Salhi & Ghazwan Alsoufi & Xinan Yang, 2019. "An evolutionary approach to a combined mixed integer programming model of seaside operations as arise in container ports," Annals of Operations Research, Springer, vol. 272(1), pages 69-98, January.
    10. Bierwirth, Christian & Meisel, Frank, 2015. "A follow-up survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 244(3), pages 675-689.
    11. Sun, Defeng & Tang, Lixin & Baldacci, Roberto, 2019. "A Benders decomposition-based framework for solving quay crane scheduling problems," European Journal of Operational Research, Elsevier, vol. 273(2), pages 504-515.
    12. Lashkari, Shabnam & Wu, Yong & Petering, Matthew E.H., 2017. "Sequencing dual-spreader crane operations: Mathematical formulation and heuristic algorithm," European Journal of Operational Research, Elsevier, vol. 262(2), pages 521-534.
    13. Noura Al-Dhaheri & Ali Diabat, 2017. "A Lagrangian relaxation-based heuristic for the multi-ship quay crane scheduling problem with ship stability constraints," Annals of Operations Research, Springer, vol. 248(1), pages 1-24, January.
    14. Gharehgozli, A.H. & Roy, D. & de Koster, M.B.M., 2014. "Sea Container Terminals," ERIM Report Series Research in Management ERS-2014-009-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    15. Wu, Lingxiao & Ma, Weimin, 2017. "Quay crane scheduling with draft and trim constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 97(C), pages 38-68.
    16. Hongming Li & Xintao Li, 2022. "A Branch-and-Bound Algorithm for the Bi-Objective Quay Crane Scheduling Problem Based on Efficiency and Energy," Mathematics, MDPI, vol. 10(24), pages 1-20, December.
    17. Chen, Lu & Langevin, André & Lu, Zhiqiang, 2013. "Integrated scheduling of crane handling and truck transportation in a maritime container terminal," European Journal of Operational Research, Elsevier, vol. 225(1), pages 142-152.
    18. T. R. Lalita & G. S. R. Murthy, 2022. "Compact ILP formulations for a class of solutions to berth allocation and quay crane scheduling problems," OPSEARCH, Springer;Operational Research Society of India, vol. 59(1), pages 413-439, March.
    19. Feifeng Zheng & Yaxin Pang & Ming Liu & Yinfeng Xu, 2020. "Dynamic programming algorithms for the general quay crane double-cycling problem with internal-reshuffles," Journal of Combinatorial Optimization, Springer, vol. 39(3), pages 708-724, April.
    20. Zhang, An & Zhang, Wenshuai & Chen, Yong & Chen, Guangting & Chen, Xufeng, 2017. "Approximate the scheduling of quay cranes with non-crossing constraints," European Journal of Operational Research, Elsevier, vol. 258(3), pages 820-828.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:flsman:v:29:y:2017:i:1:d:10.1007_s10696-016-9264-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.