IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v75y2010i3p357-364.html
   My bibliography  Save this article

Heavy-tailed distribution of cyber-risks

Author

Listed:
  • T. Maillart
  • D. Sornette

Abstract

No abstract is available for this item.

Suggested Citation

  • T. Maillart & D. Sornette, 2010. "Heavy-tailed distribution of cyber-risks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 75(3), pages 357-364, June.
  • Handle: RePEc:spr:eurphb:v:75:y:2010:i:3:p:357-364
    DOI: 10.1140/epjb/e2010-00120-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1140/epjb/e2010-00120-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1140/epjb/e2010-00120-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yannick Malevergne & Didier Sornette, 2006. "Extreme Financial Risks : From Dependence to Risk Management," Post-Print hal-02298069, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Farkas, Sébastien & Lopez, Olivier & Thomas, Maud, 2021. "Cyber claim analysis using Generalized Pareto regression trees with applications to insurance," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 92-105.
    2. Alessandro Mazzoccoli, 2023. "Optimal Cyber Security Investment in a Mixed Risk Management Framework: Examining the Role of Cyber Insurance and Expenditure Analysis," Risks, MDPI, vol. 11(9), pages 1-14, August.
    3. Kjartan Palsson & Steinn Gudmundsson & Sachin Shetty, 0. "Analysis of the impact of cyber events for cyber insurance," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 0, pages 1-16.
    4. Jevtić, Petar & Lanchier, Nicolas, 2020. "Dynamic structural percolation model of loss distribution for cyber risk of small and medium-sized enterprises for tree-based LAN topology," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 209-223.
    5. Domenico Giovanni & Arturo Leccadito & Marco Pirra, 2021. "On the determinants of data breaches: A cointegration analysis," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(1), pages 141-160, June.
    6. Ma, Boyuan & Chu, Tingjin & Jin, Zhuo, 2022. "Frequency and severity estimation of cyber attacks using spatial clustering analysis," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 33-45.
    7. Pavel V. Shevchenko & Jiwook Jang & Matteo Malavasi & Gareth W. Peters & Georgy Sofronov & Stefan Truck, 2022. "The Nature of Losses from Cyber-Related Events: Risk Categories and Business Sectors," Papers 2202.10189, arXiv.org, revised Mar 2022.
    8. Arnaud Mignan, 2022. "Categorizing and Harmonizing Natural, Technological, and Socio-Economic Perils Following the Catastrophe Modeling Paradigm," IJERPH, MDPI, vol. 19(19), pages 1-32, October.
    9. Eling, Martin & Loperfido, Nicola, 2017. "Data breaches: Goodness of fit, pricing, and risk measurement," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 126-136.
    10. Zängerle, Daniel & Schiereck, Dirk, 2022. "Modelling and predicting enterprise‑level cyber risks in the context of sparse data availability," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 136276, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    11. Malavasi, Matteo & Peters, Gareth W. & Shevchenko, Pavel V. & Trück, Stefan & Jang, Jiwook & Sofronov, Georgy, 2022. "Cyber risk frequency, severity and insurance viability," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 90-114.
    12. Gareth W. Peters & Matteo Malavasi & Georgy Sofronov & Pavel V. Shevchenko & Stefan Trück & Jiwook Jang, 2023. "Cyber loss model risk translates to premium mispricing and risk sensitivity," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 48(2), pages 372-433, April.
    13. Alessandro Mazzoccoli & Maurizio Naldi, 2022. "An Overview of Security Breach Probability Models," Risks, MDPI, vol. 10(11), pages 1-29, November.
    14. Kjartan Palsson & Steinn Gudmundsson & Sachin Shetty, 2020. "Analysis of the impact of cyber events for cyber insurance," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 45(4), pages 564-579, October.
    15. Nandi O Leslie & Richard E Harang & Lawrence P Knachel & Alexander Kott, 2018. "Statistical models for the number of successful cyber intrusions," The Journal of Defense Modeling and Simulation, , vol. 15(1), pages 49-63, January.
    16. Spencer Wheatley & Annette Hofmann & Didier Sornette, 2021. "Addressing insurance of data breach cyber risks in the catastrophe framework," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 46(1), pages 53-78, January.
    17. Meng Sun & Yi Lu, 2022. "A Generalized Linear Mixed Model for Data Breaches and Its Application in Cyber Insurance," Risks, MDPI, vol. 10(12), pages 1-23, November.
    18. Daouia, Abdelaati & Stupfler, Gilles & Usseglio-Carleve, Antoine, 2023. "Bias-reduced and variance-corrected asymptotic Gaussian inference about extreme expectiles," TSE Working Papers 23-1444, Toulouse School of Economics (TSE), revised Nov 2023.
    19. Daniel Zängerle & Dirk Schiereck, 2023. "Modelling and predicting enterprise-level cyber risks in the context of sparse data availability," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 48(2), pages 434-462, April.
    20. Matteo Malavasi & Gareth W. Peters & Pavel V. Shevchenko & Stefan Truck & Jiwook Jang & Georgy Sofronov, 2021. "Cyber Risk Frequency, Severity and Insurance Viability," Papers 2111.03366, arXiv.org, revised Mar 2022.
    21. Bent Flyvbjerg & Alexander Budzier & Daniel Lunn, 2021. "Regression to the tail: Why the Olympics blow up," Environment and Planning A, , vol. 53(2), pages 233-260, March.
    22. Eling, Martin & Wirfs, Jan Hendrik, 2016. "Cyber Risk: Too Big to Insure? Risk Transfer Options for a mercurial risk class," I.VW HSG Schriftenreihe, University of St.Gallen, Institute of Insurance Economics (I.VW-HSG), volume 59, number 59.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alves, L.G.A. & Ribeiro, H.V. & Lenzi, E.K. & Mendes, R.S., 2014. "Empirical analysis on the connection between power-law distributions and allometries for urban indicators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 409(C), pages 175-182.
    2. Donatien Hainaut & Renaud MacGilchrist, 2012. "Strategic asset allocation with switching dependence," Annals of Finance, Springer, vol. 8(1), pages 75-96, February.
    3. Diana, Tony, 2011. "Improving schedule reliability based on copulas: An application to five of the most congested US airports," Journal of Air Transport Management, Elsevier, vol. 17(5), pages 284-287.
    4. Dietmar Pfeifer & Olena Ragulina, 2018. "Generating VaR Scenarios under Solvency II with Product Beta Distributions," Risks, MDPI, vol. 6(4), pages 1-15, October.
    5. Hernández-Ramírez, E. & del Castillo-Mussot, M. & Hernández-Casildo, J., 2021. "World per capita gross domestic product measured nominally and across countries with purchasing power parity: Stretched exponential or Boltzmann–Gibbs distribution?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 568(C).
    6. Tang, Qihe & Yang, Fan, 2012. "On the Haezendonck–Goovaerts risk measure for extreme risks," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 217-227.
    7. César Garcia-Gomez & Ana Pérez & Mercedes Prieto-Alaiz, 2022. "The evolution of poverty in the EU-28: a further look based on multivariate tail dependence," Working Papers 605, ECINEQ, Society for the Study of Economic Inequality.
    8. Sornette, Didier & Zhou, Wei-Xing, 2006. "Importance of positive feedbacks and overconfidence in a self-fulfilling Ising model of financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(2), pages 704-726.
    9. M. Wili'nski & A. Sienkiewicz & T. Gubiec & R. Kutner & Z. R. Struzik, 2013. "Structural and topological phase transitions on the German Stock Exchange," Papers 1301.2530, arXiv.org, revised Jul 2013.
    10. Sandro Claudio Lera & Didier Sornette, 2015. "Currency target zone modeling: An interplay between physics and economics," Papers 1508.04754, arXiv.org, revised Oct 2015.
    11. Fantazzini, Dean, 2011. "Analysis of multidimensional probability distributions with copula functions," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 22(2), pages 98-134.
    12. Mateusz Denys & Maciej Jagielski & Tomasz Gubiec & Ryszard Kutner & H. Eugene Stanley, 2015. "Universality of market superstatistics," Papers 1509.06315, arXiv.org.
    13. Yannick Malevergne & Vladilen Pisarenko & Didier Sornette, 2006. "On the Power of Generalized Extreme Value (GEV) and Generalized Pareto Distribution (GPD) Estimators for Empirical Distributions of Stock Returns," Post-Print hal-02311834, HAL.
    14. Chen, Wang & Wei, Yu & Lang, Qiaoqi & Lin, Yu & Liu, Maojuan, 2014. "Financial market volatility and contagion effect: A copula–multifractal volatility approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 398(C), pages 289-300.
    15. Martin Eling & Simone Farinelli & Damiano Rossello & Luisa Tibiletti, 2010. "Skewness in hedge funds returns: classical skewness coefficients vs Azzalini's skewness parameter," International Journal of Managerial Finance, Emerald Group Publishing Limited, vol. 6(4), pages 290-304, September.
    16. Christian Genest & Michel Gendron & Michaël Bourdeau-Brien, 2009. "The Advent of Copulas in Finance," The European Journal of Finance, Taylor & Francis Journals, vol. 15(7-8), pages 609-618.
    17. Zhou, Wei-Xing, 2012. "Finite-size effect and the components of multifractality in financial volatility," Chaos, Solitons & Fractals, Elsevier, vol. 45(2), pages 147-155.
    18. Wei-han Liu, 2013. "Detecting structural breaks in tail behaviour -- from the perspective of fitting the generalized Pareto distribution," Applied Economics, Taylor & Francis Journals, vol. 45(10), pages 1273-1286, April.
    19. Alexander Saichev & Thomas Maillart & Didier Sornette, 2013. "Hierarchy of temporal responses of multivariate self-excited epidemic processes," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 86(4), pages 1-19, April.
    20. A. Sienkiewicz & T. Gubiec & R. Kutner & Z. R. Struzik, 2013. "Dynamic structural and topological phase transitions on the Warsaw Stock Exchange: A phenomenological approach," Papers 1301.6506, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:75:y:2010:i:3:p:357-364. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.